期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
3D printed modular Bouligand dissipative structures with adjustable mechanical properties for gradient energy absorbing
1
作者 Junfeng Xiao Mengxing Zhang +6 位作者 Fei Zhai Hongrui Wei Sen Liu Peng Wang Zhiyang Liu Zhongying Ji Xiaolong Wang 《Materials Futures》 2024年第2期104-116,共13页
Three-dimensional(3D)printing allows for the creation of complex,layered structures with precise micro and macro architectures that are not achievable through traditional methods.By designing 3D structures with geomet... Three-dimensional(3D)printing allows for the creation of complex,layered structures with precise micro and macro architectures that are not achievable through traditional methods.By designing 3D structures with geometric precision,it is possible to achieve selective regulation of mechanical properties,enabling efficient dissipation of mechanical energy.In this study,a series of modular samples inspired by the Bouligand structure were designed and produced using a direct ink writing system,along with a classical printable polydimethylsiloxane ink.By altering the angles of filaments in adjacent layers(from 30◦to 90◦)and the filament spacing during printing(from 0.8 mm to 2.4 mm),the mechanical properties of these modular samples can be adjusted.Compression mechanical testing revealed that the 3D printed modular Bouligand structures exhibit stress-strain responses that enable multiple adjustments of the elastic modulus from 0.06 MPa to over 0.8 MPa.The mechanical properties were adjusted more than 10 times in printed samples prepared using uniform materials.The gradient control mechanism of mechanical properties during this process was analyzed using finite element analysis.Finally,3D printed customized modular Bouligand structures can be assembled to create an array with Bouligand structures displaying various orientations and interlayer details tailored to specific requirements.By decomposing the original Bouligand structure and then assembling the modular samples into a specialized array,this research aims to provide parameters for achieving gradient energy absorption structures through modular 3D printing. 展开更多
关键词 3D printing additive manufacturing bouligand structure energy absorbing structures
原文传递
Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales 被引量:5
2
作者 Yuan Zhang Guoqi Tan +9 位作者 Mingyang Zhang Qin Yu Zengqian Liu Yanyan Liu Jian Zhang Da Jiao Faheng Wang Longchao Zhuo Zhefeng Zhang Robert O.Ritchie 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第1期21-30,共10页
The microscopic Bouligand-type architectures of fish scales demonstrate a notable efficiency in enhancing the damage tolerance of materials;nevertheless,it is challenging to reproduce in metals.Here bioinspired tungst... The microscopic Bouligand-type architectures of fish scales demonstrate a notable efficiency in enhancing the damage tolerance of materials;nevertheless,it is challenging to reproduce in metals.Here bioinspired tungsten-copper composites with different Bouligand-type architectures mimicking fish scales were fabricated by infiltrating a copper melt into woven contextures of tungsten fibers.These composites exhibit a synergetic enhancement in both strength and ductility at room temperature along with an improved resistance to high-temperature oxidization.The strengths were interpreted by adapting the classical laminate theory to incorporate the characteristics of Bouligand-type architectures.In particular,under load the tungsten fibers can reorient adaptively within the copper matrix by their straightening,stretching,interfacial sliding with the matrix,and the cooperative kinking deformation of fiber grids,representing a successful implementation of the optimizing mechanisms of the Bouligand-type architectures to enhance strength and toughness.This study may serve to promote the development of new high-performance tungsten-copper composites for applications,e.g.,as electrical contacts or heat sinks,and offer a viable approach for constructing bioinspired architectures in metallic materials. 展开更多
关键词 bouligand structure Tungsten-copper composites Fish scales Structural reorientation Bioinspired designs
原文传递
Bending Resistance and Anisotropy of Basalt Fibers Laminate Composite with Bionic Helical Structure 被引量:2
3
作者 Binjie Zhang Qigang Han +4 位作者 Hanlin Qin Junqiu Zhang Shichao Niu Zhiwu Han Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第3期799-815,共17页
The appendages of mantis shrimp often bear bending loads from different directions during the in the process of preying on prey with its grazing limb.Hence,it has excellent bending resistance and isotropy to confront ... The appendages of mantis shrimp often bear bending loads from different directions during the in the process of preying on prey with its grazing limb.Hence,it has excellent bending resistance and isotropy to confront complex and changeable external load.The outstanding performance owes to the helical Bouligand structure with a certain interlayer corner,which is also widely found in other natural materials.Hence,the bio-inspired materials with basalt fiber are fabricated with outstanding bending resistance,isotropy and toughness.The research shows laminates with 18°interlayer corners exhibit relatively excellent bending resistance and isotropy,and the laminate with 11.25°interlayer corner has best toughness.Compared with traditional composites,average bending strength along different loading direction of bio-inspired materials increased by 28%,and anisotropy decreased by 86%.Besides,the maximum toughness of laminates can increase to 1.7 times of the original.Following the introduction of interlayer corners,the bio-inspired composite tends to be isotropic.To explore the reason for the change of the isotropic performance caused by diverse interlayer corners,the Finite Element Analysis based on classical laminate theory and Tsai–Wu and Tsai–Hill failure criterion.Besides,further experiments and observations are conducted to explore possible reasons.In conclusion,following the introduction of interlayer corners,the bio-inspired composites tend to be isotropic.This bio-inspired composites are expected to be applied to various complex modern engineering fields,such as vehicle,rail transit and aerospace. 展开更多
关键词 Helical bouligand structure Bio-inspired composites Bending resistance ISOTROPY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部