Two dimensional equations of steady motion for third order fluids are expressed in a special coordinate system generated by the potential flow corresponding to an inviscid fluid. For the inviscid flow around an arbitr...Two dimensional equations of steady motion for third order fluids are expressed in a special coordinate system generated by the potential flow corresponding to an inviscid fluid. For the inviscid flow around an arbitrary object, the streamlines are the phi-coordinates and velocity potential lines are psi-coordinates which form an orthogonal curvilinear set of coordinates. The outcome, boundary layer equations, is then shown to be independent of the body shape immersed into the flow. As a first approximation,assumption that second grade terms are negligible compared to viscous and third grade terms. Second grade terms spoil scaling transformation which is only transformation leading to similarity solutions for third grade fluid. By using Lie group methods,infinitesimal generators of boundary layer equations are calculated. The equations are transformed into an ordinary differential system. Numerical solutions of outcoming nonlinear differential equations are found by using combination of a Runge-Kutta algorithm and shooting technique.展开更多
Classical non-steady boundary layer equations are fundamental nonlinear partial differential equations in the boundary layer theory of fluid dynamics. In this paper, we introduce various schemes with multiple paramete...Classical non-steady boundary layer equations are fundamental nonlinear partial differential equations in the boundary layer theory of fluid dynamics. In this paper, we introduce various schemes with multiple parameter functions to solve these equations and obtain many families of new explicit exact solutions with multiple parameter functions. Moreover, symmetry transformations are used to simplify our arguments. The technique of moving frame is applied in the three-dimensional case in order to capture the rotational properties of the fluid. In particular, we obtain a family of solutions singular on any moving surface, which may be used to study turbulence. Many other solutions are analytic related to trigonometric and hyperbolic functions, which reflect various wave characteristics of the fluid. Our solutions may also help engineers to develop more effective algorithms to find physical numeric solutions to practical models.展开更多
文摘Two dimensional equations of steady motion for third order fluids are expressed in a special coordinate system generated by the potential flow corresponding to an inviscid fluid. For the inviscid flow around an arbitrary object, the streamlines are the phi-coordinates and velocity potential lines are psi-coordinates which form an orthogonal curvilinear set of coordinates. The outcome, boundary layer equations, is then shown to be independent of the body shape immersed into the flow. As a first approximation,assumption that second grade terms are negligible compared to viscous and third grade terms. Second grade terms spoil scaling transformation which is only transformation leading to similarity solutions for third grade fluid. By using Lie group methods,infinitesimal generators of boundary layer equations are calculated. The equations are transformed into an ordinary differential system. Numerical solutions of outcoming nonlinear differential equations are found by using combination of a Runge-Kutta algorithm and shooting technique.
基金Supported by National Natural Science Foundation of China (Grant No. 10871193)
文摘Classical non-steady boundary layer equations are fundamental nonlinear partial differential equations in the boundary layer theory of fluid dynamics. In this paper, we introduce various schemes with multiple parameter functions to solve these equations and obtain many families of new explicit exact solutions with multiple parameter functions. Moreover, symmetry transformations are used to simplify our arguments. The technique of moving frame is applied in the three-dimensional case in order to capture the rotational properties of the fluid. In particular, we obtain a family of solutions singular on any moving surface, which may be used to study turbulence. Many other solutions are analytic related to trigonometric and hyperbolic functions, which reflect various wave characteristics of the fluid. Our solutions may also help engineers to develop more effective algorithms to find physical numeric solutions to practical models.