To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Glo...To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Global-diagnosis sequence algorithm to replace the equal weight algorithm of primary test, and the test time is shortened without changing the fault diagnostic capability. The descriptions of five modified adaptive test algorithms are presented, and the capability comparison between the modified algorithm and the original algorithm is made to prove the validity of these algorithms.展开更多
The IEEE Standard 1149.1 boundary scan (BS) implementation provides the internal access required for testing the digital printed circuit board (PCB). However, the integrity of the boundary scan test infrastructure sh...The IEEE Standard 1149.1 boundary scan (BS) implementation provides the internal access required for testing the digital printed circuit board (PCB). However, the integrity of the boundary scan test infrastructure should be tested first to guarantee the validation of the results of the rest functional test and diagnosis. This paper describes the fault models and test principles of the BS test access port (TAP) lines on PCBs. A test algorithm with high fault coverage and short time is then presented for the PCB on which all ICs are BS ones.展开更多
The boundary scan architecture and its basic principle of board level built in test(BIT) technology are presented. A design for board level built in test and the method to implement test tool are brought forward.
This paper describes a microprogrammed architecture for an embedded coprocessor that is able to control IEEE 1149.1 to IEEE 1149.7 test infrastructures, and explains how to expand the supported test command set. The c...This paper describes a microprogrammed architecture for an embedded coprocessor that is able to control IEEE 1149.1 to IEEE 1149.7 test infrastructures, and explains how to expand the supported test command set. The coprocessor uses a fast simplex link (FSL) channel to interface a 32-bit MicroBlaze CPU, but it can work with any microprocessor core that accepts this simple FIFO-based interface method. The implementation cost (logic resource usage for a Xilinx Spartan-6 FPGA) and the performance data (operating frequency) are presented for a test command set comprising two parts: 1) the full IEEE 1149.1 structural test operations;2) a subset of IEEE 1149.7 operations selected to illustrate the implementation of advanced scan formats.展开更多
文摘To study the diagnostic problem of Wire-OR (W-O) interconnect fault of PCB (Printed Circuit Board), five modified boundary scan adaptive algorithms for interconnect test are put forward. These algorithms apply Global-diagnosis sequence algorithm to replace the equal weight algorithm of primary test, and the test time is shortened without changing the fault diagnostic capability. The descriptions of five modified adaptive test algorithms are presented, and the capability comparison between the modified algorithm and the original algorithm is made to prove the validity of these algorithms.
文摘The IEEE Standard 1149.1 boundary scan (BS) implementation provides the internal access required for testing the digital printed circuit board (PCB). However, the integrity of the boundary scan test infrastructure should be tested first to guarantee the validation of the results of the rest functional test and diagnosis. This paper describes the fault models and test principles of the BS test access port (TAP) lines on PCBs. A test algorithm with high fault coverage and short time is then presented for the PCB on which all ICs are BS ones.
文摘The boundary scan architecture and its basic principle of board level built in test(BIT) technology are presented. A design for board level built in test and the method to implement test tool are brought forward.
文摘This paper describes a microprogrammed architecture for an embedded coprocessor that is able to control IEEE 1149.1 to IEEE 1149.7 test infrastructures, and explains how to expand the supported test command set. The coprocessor uses a fast simplex link (FSL) channel to interface a 32-bit MicroBlaze CPU, but it can work with any microprocessor core that accepts this simple FIFO-based interface method. The implementation cost (logic resource usage for a Xilinx Spartan-6 FPGA) and the performance data (operating frequency) are presented for a test command set comprising two parts: 1) the full IEEE 1149.1 structural test operations;2) a subset of IEEE 1149.7 operations selected to illustrate the implementation of advanced scan formats.