期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Observation-based Estimation of Aerosol-induced Reduction of Planetary Boundary Layer Height 被引量:8
1
作者 Jun ZOU Jianning SUN +3 位作者 Aijun DING Minghuai WANG Weidong GUO Congbin FU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第9期1057-1068,共12页
Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetar... Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 W m-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m. 展开更多
关键词 AEROSOL RADIATION atmospheric stability surface sensible heat flux planetary boundary layer height
下载PDF
VARIATION CHARACTERISTICS OF THE PLANETARY BOUNDARY LAYER HEIGHT AND ITS RELATIONSHIP WITH PM2.5 CONCENTRATION OVER CHINA 被引量:5
2
作者 王寅钧 徐祥德 +1 位作者 赵阳 王敏仲 《Journal of Tropical Meteorology》 SCIE 2018年第3期385-394,共10页
The planetary boundary layer height(PBLH) was calculated using the radiosonde sounding data, including120 L-band operational sites and 8 GPS sites in China. The diurnal and seasonal variations of PBLH were analyzed us... The planetary boundary layer height(PBLH) was calculated using the radiosonde sounding data, including120 L-band operational sites and 8 GPS sites in China. The diurnal and seasonal variations of PBLH were analyzed using radiosonde sounding(OBS-PBLH) and ERA data(ERA-PBLH). Based on comparison and error analyses, we discussed the main error sources in these data. The frequency distributions of PBLH variations under different regimes(the convective boundary layer, the neutral residual layer, and the stable boundary layer) can be well fitted by a Gamma distribution and the shape parameter k and scale parameter s values were obtained for different regions of China. The variation characteristics of PBLH were found in summer under these three regimes for different regions. The relationships between PBLH and PM_(2.5) concentration generally follow a power law under very low or no precipitation conditions in the region of Beijing, Tianjin and Hebei in summer. The results usually deviated from this power distribution only under strong precipitation or high relative humidity conditions because of the effects of hygroscopic growth of aerosols or wet deposition. The OBS-PBLH provided a reasonable spatial distribution relative to ERA-PBLH.This indicates that OBS-PBLH has the potential for identifying the variation of PM_(2.5) concentration. 展开更多
关键词 L-band and GPS sounding planetary boundary layer height PM2.5 concentration
下载PDF
Validation and Spatiotemporal Distribution of GEOS-5-Based Planetary Boundary Layer Height and Relative Humidity in China 被引量:2
3
作者 Yidan SI Shenshen LI +4 位作者 Liangfu CHEN Chao YU Zifeng WANG Yang WANG Hongmei WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第4期479-492,共14页
Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and sur... Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and surface-level RH data simulated from GEOS-5 between 2004 and 2012, were validated against ground-based observations. Overall, the simulated RH was consistent with the statistical data from meteorological stations, with a correlation coefficient of 0.78 and a slope of 0.9. However, the simulated PBLH was underestimated compared to LIDAR data by a factor of approximately two, which was primarily because of poor simulation in late summer and early autumn. We further examined the spatiotemporal distribution characteristics of two factors in four regions--North China, South China, Northwest China, and the Tibetan Plateau. The results showed that the annual PBLH trends in all regions were fairly moderate but sensitive to solar radiation and precipitation, which explains why the PBLH values were ranked in order from largest to smallest as follows: Tibetan Plateau, Northwest China, North China, and South China. Strong seasonal variation of the PBLH exhibited high values in summer and low values in winter, which was also consistent with the turbulent vertical exchange. Not surprisingly, the highest RH in South China and the lowest RH in desert areas of Northwest China (less than 30%). Seasonally, South China exhibited little variation, whereas Northwest China exhibited its highest humidity in winter and lowest humidity in spring, the maximum values in the other regions were obtained from July to September. 展开更多
关键词 GEOS-5 planetary boundary layer height relative humidity VALIDATION spatiotemporal distribution
下载PDF
Retrieval of Boundary Layer Height and Its Influence on PM_(2.5) Concentration Based on Lidar Observation over Guangzhou 被引量:2
4
作者 宋烺 邓涛 +5 位作者 李振宁 吴晟 何国文 李菲 吴蒙 吴兑 《Journal of Tropical Meteorology》 SCIE 2021年第3期303-318,共16页
Wavelet analysis was applied to lidar observations to retrieve the planetary boundary layer height(PBLH)over Guangzhou from September 2013 to November 2014 over Guangzhou.Impact of the boundary effect and the wavelet ... Wavelet analysis was applied to lidar observations to retrieve the planetary boundary layer height(PBLH)over Guangzhou from September 2013 to November 2014 over Guangzhou.Impact of the boundary effect and the wavelet scale factor on the accuracy of the retrieved PBLH has been explored thoroughly.In addition,the PBLH diurnal variations and the relationship between PM_(2.5) concentration and PBLH during polluted and clean episodes were studied.Results indicate that the most steady retrieved PBLH can be obtained when scale factor is chosen between 300-390 m.The retrieved maximum and minimum PBLH in the annual mean diurnal cycle were~1100 m and~650 m,respectively.The PBLH was significantly lower in the dry season than in the wet season,with the average highest PBLH in the dry season and the wet season being~1050 m and~1200 m respectively.Compared to the wet season,the development of PBLH in the dry season was delayed by at least one hour due to the seasonal cycle of solar radiation.Episode analysis indicated that the PBLH was~50%higher during clean episodes than during haze episodes.The average highest PBLH in the haze episodes and clean episodes were~800 m and~1300 m,respectively.A significant negative correlation between PBLH and PM_(2.5) concentration(r=-0.55**)is discovered.According to China"Ambient Air Quality Standard",the PBLH values in good and slightly polluted conditions were 1/6-1/3 lower than that in excellent conditions,while the corresponding PM_(2.5) concentration were~2-2.5 times higher. 展开更多
关键词 HAZE LIDAR PM_(2.5) planetary boundary layer height wavelet analysis
下载PDF
Diurnal variability of the planetary boundary layer height estimated from radiosonde data 被引量:2
5
作者 Jie Gu YeHui Zhang +1 位作者 Na Yang Rui Wang 《Earth and Planetary Physics》 CSCD 2020年第5期479-492,共14页
Diurnal variations in the planetary boundary layer height(PBLH)at different latitudes over different surface characteristics are described,based on 45 years(1973−2017)of radiosonde observations.The PBLH is determined ... Diurnal variations in the planetary boundary layer height(PBLH)at different latitudes over different surface characteristics are described,based on 45 years(1973−2017)of radiosonde observations.The PBLH is determined from the radiosonde data by the bulk Richardson number(BRN)method and verified by the parcel method and the potential temperature gradient method.In general,the BRN method is able to represent the height of the convective boundary layer(BL)and neutral residual layer cases but has relatively large uncertainty in the stable BL cases.The diurnal cycle of the PBLH over land is quite different from the cycle over ocean,as are their seasonal variations.For stations over land,the PBLH shows an apparent diurnal cycle,with a distinct maximum around 15:00 LT,and seasonal variation,with higher values in summer.Compared with the PBLH over land,over oceans the PBLH diurnal cycles are quite mild,the PBLHs are much lower,and the seasonal changes are less pronounced.The seasonal variations in the median PBLH diurnal cycle are positively correlated with the near-surface temperature and negatively correlated with the near-surface relative humidity.Finally,although at most latitudes the daytime PBLH exhibits,over these 45 years,a statistically significant increasing trend at most hours between 12:00 LT and 18:00 LT over both land and ocean,there is no significant trend over either land or ocean in the nighttime PBLH for almost all the studied latitudes. 展开更多
关键词 planetary boundary layer height diurnal cycle RADIOSONDE
下载PDF
Robust Solution for Boundary Layer Height Detections with Coherent Doppler Wind Lidar
6
作者 Lu WANG Wei QIANG +3 位作者 Haiyun XIA Tianwen WEI Jinlong YUAN Pu JIANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第11期1920-1928,共9页
Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution f... Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution for BLH detections with CDWL is proposed and demonstrated:mixed layer height(MLH)is retrieved best from turbulent kinetic energy dissipation rate(TKEDR),while stable boundary layer height(SBLH)and residual layer height(RLH)can be retrieved from carrier-to-noise ratio(CNR).To study the cause of the BLH differences,an intercomparison experiment is designed with two identical CDWLs,where only one is equipped with a stability control subsystem.During the experiment,it is found that the CNR could be distorted by instrument instability because the coupling efficiency from free-space to the polarization-maintaining fiber of the telescope is sensitive to the surrounding environment.In the ML,a bias up to 2.13 km of the MLH from CNR is found,which is caused by the CNR deviation.In contrast,the MLH from TKEDR is robust as long as the accuracy of wind is guaranteed.In the SBL(RL),the CNR is found capable to retrieve SBLH and RLH simultaneously and robustly.This solution is tested during an observation period over one month.Statistical analysis shows that the root-mean-square errors(RMSE)in the MLH,SBLH,and RLH are 0.28 km,0.23 km,and 0.24 km,respectively. 展开更多
关键词 boundary layer height coherent Doppler wind lidar carrier-to-noise ratio turbulent kinetic energy dissipation rate
下载PDF
Study of Boundary Layer Height over West Africa
7
作者 Semou Ndao Djiondo Ngongang Rinelle +2 位作者 Daouda Badiane Andre Lenouo Saidou Moustapha Sall 《Journal of Geoscience and Environment Protection》 2019年第11期179-194,共16页
Monthly means of boundary layer height (BLH) over West Africa are presented based on 36 years (1979-2014) of six-hourly ERA-Interim reanalysis. In this region, we found that there is a link between the West Africa Mon... Monthly means of boundary layer height (BLH) over West Africa are presented based on 36 years (1979-2014) of six-hourly ERA-Interim reanalysis. In this region, we found that there is a link between the West Africa Monsoon (WAM) and the monthly means of BLH in the summer. The trend and empirical orthogonal function (EOF) of BLH are presented, including the mid July variability of BLH with the precipitation. The dominant EOF of BLH accounts for around 42% of the variance with slightly large amplitude in the north while relatively small in the equatorial band. The second EOF which accounts for 16.4%, describes a longitudinal contrast with a zonal gradient. The relationship between BLH and precipitation is found using the canonical correlation analysis (CCA). Significant trends of the first and second pairs of BLH with precipitation are shown. The first and second CCA pair has a correlation of 68% and 60% with 12.2 and 10.8 degrees of freedom respectively. The critical correlation coefficients at the 95% level are 0.21 and 0.65 for the first and second CCA pairs respectively. This first CCA pair mostly determines the arid and semi-arid areas where the rate of explained regional variance is about 78% in the arid area and 73% in the semi-arid area. For the second pair of CCA, the rate of explained regional variance is more than 60% in the Guinea coast and wet equatorial area. 展开更多
关键词 boundary layer height West Africa Monsoon Inter Tropical Convergence Zone CCA
下载PDF
Characteristics of atmospheric boundary layer structure and its influencing factors under different sea and land positions in Europe
8
作者 YeHui Zhang XinPeng Yong +2 位作者 HouFu Zhou HaiYang Gao Na Yang 《Earth and Planetary Physics》 EI CSCD 2023年第2期257-268,共12页
This study identifies quantitatively the dominant contributions of meteorological factors on the development of the boundary layer heights(BLH)in the European region,based on 32 years(1990-2021)of radiosonde observati... This study identifies quantitatively the dominant contributions of meteorological factors on the development of the boundary layer heights(BLH)in the European region,based on 32 years(1990-2021)of radiosonde observations.The spatial variability of the BLH is further discussed by location,by classifying recording stations as inland,coastal,or bay.We find that the BLH in Europe varies considerably from day to night and with the seasons.Nighttime BLH is higher in winter and lower in summer,with the highest BLH recorded at coastal stations.Daytime BLH at coastal stations shows a bimodal structure with peaks in spring and autumn;at inland and bay stations,daytime BLH is lower in winter and higher in summer.The daily amplitudes of BLH at the inland and bay stations are stronger than those at coastal stations.Based on our multiple linear regression analysis and our decoupling analysis of temperature and specific humidity,we report that the development of the nighttime BLH at all types of stations is strongly dominated by the variations of surface wind speed(and,at coastal stations,wind directions).The main contributors to daytime BLH are the near-surface temperature variability at most coastal and inland stations,and,at most bay stations,the variation of the near-surface specific humidity. 展开更多
关键词 atmospheric boundary layer height WIND surface temperature specific humidity DECOUPLING
下载PDF
Research Progress on Estimation of the Atmospheric Boundary Layer Height 被引量:3
9
作者 Hongsheng ZHANG Xiaoye ZHANG +8 位作者 Qianhui LI Xuhui CAI Shaojia FAN Yu SONG Fei HU Huizheng CHE Jiannong QUAN Ling KANG Tong ZHU 《Journal of Meteorological Research》 SCIE CSCD 2020年第3期482-498,共17页
Atmospheric boundary layer height(ABLH)is an important parameter used to depict characteristics of the planetary boundary layer(PBL)in the lower troposphere.The ABLH is strongly associated with the vertical distributi... Atmospheric boundary layer height(ABLH)is an important parameter used to depict characteristics of the planetary boundary layer(PBL)in the lower troposphere.The ABLH is strongly associated with the vertical distributions of heat,mass,and energy in the PBL,and it is a key quantity in numerical simulation of the PBL and plays an essential role in atmospheric environmental assessment.In this paper,various definitions and methods for deriving and estimating the ABLH are summarized,from the perspectives of turbulent motion,PBL dynamics and thermodynamics,and distributions of various substances in the PBL.Different methods for determining the ABLH by means of direct observation and remote sensing retrieval are reviewed,and comparisons of the advantages and disadvantages of these methods are presented.The paper also summarizes the ABLH parameterization schemes,discusses current problems in the estimation of ABLH,and finally points out the directions for possible future breakthroughs in the ABLHrelated research and application. 展开更多
关键词 atmospheric boundary layer height(ABLH) turbulent boundary layer aerosol accumulation layer remote sensing retrieval PARAMETERIZATION
原文传递
HEIGHT OF ATMOSPHERIC BOUNDARY LAYER AS DETECTED BY COSMIC GPS RADIO OCCULTATION DATA
10
作者 刘艳 唐南军 杨学胜 《Journal of Tropical Meteorology》 SCIE 2016年第1期74-82,共9页
The characteristics of the atmospheric boundary layer height over the global ocean were studied based on the Constellation Observation System of Meteorology,Ionosphere and Climate(COSMIC) refractivity data from 2007 t... The characteristics of the atmospheric boundary layer height over the global ocean were studied based on the Constellation Observation System of Meteorology,Ionosphere and Climate(COSMIC) refractivity data from 2007 to2012.Results show that the height is much characteristic of seasonal,inter-annual and regional variation.Globally,the spatial distribution of the annual mean top height shows a symmetrical zonal structure,which is more zonal in the Southern Hemisphere than in the Northern Hemisphere.The boundary layer top is highest in the tropics and gradually decreases towards higher latitudes.The height is in a range of 3 to 3.5 km in the tropics,2 to 2.5 km in the subtropical regions,and 1 to 1.5 km or even lower in middle and high latitudes.The diurnal variation of the top height is not obvious,with the height varying from tens to hundreds of meters.Furthermore,it is different from region to region,some regions have the maximum height during 9:00 to 12:00,others at 15:00 to18:00. 展开更多
关键词 statistical characteristics atmospheric boundary layer height REFRACTIVITY COSMIC/GPS
下载PDF
The research on boundary layer evolution characteristics of Typhoon Usagi based on observations by wind profilers 被引量:3
11
作者 LIAO Fei DENG Hua +1 位作者 GAO Zhiqiu CHAN Pak-wai 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第9期39-44,共6页
Vertically exploring the characteristics of the typhoon boundary layer(TBL) plays an important role in recognizing typhoon structure. The boundary layer radial direction and tangential wind characteristics of Typhoo... Vertically exploring the characteristics of the typhoon boundary layer(TBL) plays an important role in recognizing typhoon structure. The boundary layer radial direction and tangential wind characteristics of Typhoon Usagi based on the observational data of three boundary layer wind profiler stations along the route of Typhoon Usagi(No. 1319) and by combining with sounding data. The results show that:(1) maximum tangential wind appears in the vicinity of the eye area of Usagi, and it basically maintains a height of around 1 800 m when Usagi keeps a strong typhoon level, with the rapidly decreasing strength of Usagi after it lands, the speed of the maximum tangential wind and its vertical range both decrease;(2) the height of the maximum tangential wind is close to that of the inflow layer top of the typhoon, and is greater than that of the boundary layer estimated on the basis of Richardson number or potential temperature gradient, while the height of mixed layer judged on the basis of the signal-to-noise ratio(SNR) or its gradient is usually low;(3) the the boundary layer height can reach higher than2 100 m before Usagi lands. When the typhoon level or above is achieved, the boundary layer height observed by various stations does not change much, basically staying at between 1 200 and 1 600 m. With the decreasing strength of Usagi after its landfall, the boundary layer height rapidly drops. 展开更多
关键词 TYPHOON boundary layer height wind profiler SOUNDING
下载PDF
Aerosol-radiation interaction and its variation in North China within 2015–2019 period under continuous PM_(2.5)improvements
12
作者 Zhe Lv Xiaoqi Wang +4 位作者 Wei Wei Huahua Bai Xiaoyu Liu Guohao Li Shuiyuan Cheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第2期81-94,共14页
A study was conducted on aerosol-radiation interactions over six cities in this region within the 2015–2019 period.WRF-Chem simulations on 2017 showed that based on the six-city average,the aerosol load(PM_(2.5)conce... A study was conducted on aerosol-radiation interactions over six cities in this region within the 2015–2019 period.WRF-Chem simulations on 2017 showed that based on the six-city average,the aerosol load(PM_(2.5)concentrations)of 121.9,49.6,43.3,and 66.3μg/m^(3)in January,April,July,and October,mainly lowered the level of downward shortwave radiation by 38.9,24.0,59.1,and 24.4 W/m~2and reduced the boundary layer height by 79.9,40.8,87.4,and 31.0 m,via scattering and absorbing solar radiation.The sensitivity of meteorological changes to identical aerosol loads varied in the order July>January>October and April.Then,the cooling and stabilizing effects of aerosols further led to increases in PM_(2.5),by23.0,3.4,4.6,and 7.3μg/m^(3)respectively in the four months.The sensitivity of the effect of aerosols on PM_(2.5)was greatest in January rather than in July,contrary to the effect on meteorology.Moreover,a negative linear relation was observed between daily BLH reductions and aerosol loads in fall and winter,and between PM_(2.5)increases and aerosol loads in all seasons.With the PM_(2.5)pollution improvements in this region,the aerosol radiative forcing was effectively reduced.This should result in daily BLH increases of 10–24 m in fall and winter,and the estimates in Beijing agreed well with the corresponding results based on AMDAR data.Additionally,the reduction in aerosol radiation effects brought about daily PM_(2.5)decreases of 1.6-2.8μg/m^(3),accounting for 7.0%–17.7%in PM_(2.5)improvements. 展开更多
关键词 Radiative forcing AEROSOL PM_(2.5) boundary layer height(BLH) North China
原文传递
Characteristics of air flow driven by the free surface of the open channel
13
作者 Jing Gong Jun Deng +1 位作者 Wang-ru Wei Wei-wei Li 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第1期69-75,共7页
Spillway tunnels are a key structure in large-scale water conservancies. The high-head water inlet makes the water surface-velocity extremely high, and the air is driven by the free surface of the water to move downst... Spillway tunnels are a key structure in large-scale water conservancies. The high-head water inlet makes the water surface-velocity extremely high, and the air is driven by the free surface of the water to move downstream. This paper studies the air velocity distribution above the water surface through the model tests, under the assumption that the airflow is a turbulent boundary layer with a rough interface, and the influence of the water depth and the water velocity on the air velocity distribution is analyzed. It is shown that the air velocity is in an exponential distribution. As the measured position moves upward, the air velocity gradually decreases, and the gradient decreases. When the water depth increases, the air velocity increases but with the same distribution form. With the increase of the water surface-velocity, the air velocity at the same measuring point increases, the variation range near the water surface is large, the air boundary layer height increases slightly, and the index coefficient of the air velocity distribution function decreases. Through numerical fitting, the calculation formula of the air boundary layer thickness at different water surface velocities is obtained, along with the numerical value of the index coefficient. 展开更多
关键词 Open channel air velocity distribution air boundary layer height index coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部