Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetar...Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 W m-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.展开更多
Utilizing aircraft sounding data collected from the Surface Heat Budget of the Arctic Ocean (SHEBA, 1998) campaign, the authors evaluated commonly-used profile methods for Arctic ABL height estimation by validating ag...Utilizing aircraft sounding data collected from the Surface Heat Budget of the Arctic Ocean (SHEBA, 1998) campaign, the authors evaluated commonly-used profile methods for Arctic ABL height estimation by validating against the'true'ABL height from aircraft sounding profiles, where ABL height is defined as the top of the layer with significant turbulence. Furthermore, the best performing method was used to estimate ABL height from the one-year GPS soundings obtained during SHEBA (October 1997-October 1998). It was found that the temperature gradient method produces a reliable estimate of ABL height. Additionally, the authors determined optimal threshold values of temperature gradient for stable boundary layer (SBL) and convective boundary layer (CBL) to be 6.5 K/100 m and 1.0 K/100 m, respectively. The maximum ABL height during the year was 1150 m occurred in May. Median values of Arctic ABL height in May, June, July, and August were 400 m, 430 m, 180 m, and 320 m, respectively. Arctic ABL heights are clearly higher in the spring than in the summer.展开更多
The planetary boundary layer height(PBLH) was calculated using the radiosonde sounding data, including120 L-band operational sites and 8 GPS sites in China. The diurnal and seasonal variations of PBLH were analyzed us...The planetary boundary layer height(PBLH) was calculated using the radiosonde sounding data, including120 L-band operational sites and 8 GPS sites in China. The diurnal and seasonal variations of PBLH were analyzed using radiosonde sounding(OBS-PBLH) and ERA data(ERA-PBLH). Based on comparison and error analyses, we discussed the main error sources in these data. The frequency distributions of PBLH variations under different regimes(the convective boundary layer, the neutral residual layer, and the stable boundary layer) can be well fitted by a Gamma distribution and the shape parameter k and scale parameter s values were obtained for different regions of China. The variation characteristics of PBLH were found in summer under these three regimes for different regions. The relationships between PBLH and PM_(2.5) concentration generally follow a power law under very low or no precipitation conditions in the region of Beijing, Tianjin and Hebei in summer. The results usually deviated from this power distribution only under strong precipitation or high relative humidity conditions because of the effects of hygroscopic growth of aerosols or wet deposition. The OBS-PBLH provided a reasonable spatial distribution relative to ERA-PBLH.This indicates that OBS-PBLH has the potential for identifying the variation of PM_(2.5) concentration.展开更多
This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the reg...This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the regularization technique, the first derivative of BA profiles is retrieved, and the height at which the first derivative of BA has the global minimum is defined to be the ABL height. To reflect the reliability of estimated ABL heights, the sharpness parameter is introduced, according to the relative minimum of the BA derivative. Then, it is applied to four months of COSMIC BA data(January, April, July, and October in 2008), and the ABL heights estimated are compared with two kinds of ABL heights from COSMIC products and with the heights determined by the finite difference method upon the refractivity data. For sharp ABL tops(large sharpness parameters), there is little difference between the ABL heights determined by different methods, i.e.,the uncertainties are small; whereas, for non-sharp ABL tops(small sharpness parameters), big differences exist in the ABL heights obtained by different methods, which means large uncertainties for different methods. In addition, the new method can detect thin ABLs and provide a reference ABL height in the cases eliminated by other methods. Thus, the application of the numerical differentiation method combined with the regularization technique to COSMIC BA data is an appropriate choice and has further application value.展开更多
Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and sur...Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and surface-level RH data simulated from GEOS-5 between 2004 and 2012, were validated against ground-based observations. Overall, the simulated RH was consistent with the statistical data from meteorological stations, with a correlation coefficient of 0.78 and a slope of 0.9. However, the simulated PBLH was underestimated compared to LIDAR data by a factor of approximately two, which was primarily because of poor simulation in late summer and early autumn. We further examined the spatiotemporal distribution characteristics of two factors in four regions--North China, South China, Northwest China, and the Tibetan Plateau. The results showed that the annual PBLH trends in all regions were fairly moderate but sensitive to solar radiation and precipitation, which explains why the PBLH values were ranked in order from largest to smallest as follows: Tibetan Plateau, Northwest China, North China, and South China. Strong seasonal variation of the PBLH exhibited high values in summer and low values in winter, which was also consistent with the turbulent vertical exchange. Not surprisingly, the highest RH in South China and the lowest RH in desert areas of Northwest China (less than 30%). Seasonally, South China exhibited little variation, whereas Northwest China exhibited its highest humidity in winter and lowest humidity in spring, the maximum values in the other regions were obtained from July to September.展开更多
Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution f...Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution for BLH detections with CDWL is proposed and demonstrated:mixed layer height(MLH)is retrieved best from turbulent kinetic energy dissipation rate(TKEDR),while stable boundary layer height(SBLH)and residual layer height(RLH)can be retrieved from carrier-to-noise ratio(CNR).To study the cause of the BLH differences,an intercomparison experiment is designed with two identical CDWLs,where only one is equipped with a stability control subsystem.During the experiment,it is found that the CNR could be distorted by instrument instability because the coupling efficiency from free-space to the polarization-maintaining fiber of the telescope is sensitive to the surrounding environment.In the ML,a bias up to 2.13 km of the MLH from CNR is found,which is caused by the CNR deviation.In contrast,the MLH from TKEDR is robust as long as the accuracy of wind is guaranteed.In the SBL(RL),the CNR is found capable to retrieve SBLH and RLH simultaneously and robustly.This solution is tested during an observation period over one month.Statistical analysis shows that the root-mean-square errors(RMSE)in the MLH,SBLH,and RLH are 0.28 km,0.23 km,and 0.24 km,respectively.展开更多
Diurnal variations in the planetary boundary layer height(PBLH)at different latitudes over different surface characteristics are described,based on 45 years(1973−2017)of radiosonde observations.The PBLH is determined ...Diurnal variations in the planetary boundary layer height(PBLH)at different latitudes over different surface characteristics are described,based on 45 years(1973−2017)of radiosonde observations.The PBLH is determined from the radiosonde data by the bulk Richardson number(BRN)method and verified by the parcel method and the potential temperature gradient method.In general,the BRN method is able to represent the height of the convective boundary layer(BL)and neutral residual layer cases but has relatively large uncertainty in the stable BL cases.The diurnal cycle of the PBLH over land is quite different from the cycle over ocean,as are their seasonal variations.For stations over land,the PBLH shows an apparent diurnal cycle,with a distinct maximum around 15:00 LT,and seasonal variation,with higher values in summer.Compared with the PBLH over land,over oceans the PBLH diurnal cycles are quite mild,the PBLHs are much lower,and the seasonal changes are less pronounced.The seasonal variations in the median PBLH diurnal cycle are positively correlated with the near-surface temperature and negatively correlated with the near-surface relative humidity.Finally,although at most latitudes the daytime PBLH exhibits,over these 45 years,a statistically significant increasing trend at most hours between 12:00 LT and 18:00 LT over both land and ocean,there is no significant trend over either land or ocean in the nighttime PBLH for almost all the studied latitudes.展开更多
Wavelet analysis was applied to lidar observations to retrieve the planetary boundary layer height(PBLH)over Guangzhou from September 2013 to November 2014 over Guangzhou.Impact of the boundary effect and the wavelet ...Wavelet analysis was applied to lidar observations to retrieve the planetary boundary layer height(PBLH)over Guangzhou from September 2013 to November 2014 over Guangzhou.Impact of the boundary effect and the wavelet scale factor on the accuracy of the retrieved PBLH has been explored thoroughly.In addition,the PBLH diurnal variations and the relationship between PM_(2.5) concentration and PBLH during polluted and clean episodes were studied.Results indicate that the most steady retrieved PBLH can be obtained when scale factor is chosen between 300-390 m.The retrieved maximum and minimum PBLH in the annual mean diurnal cycle were~1100 m and~650 m,respectively.The PBLH was significantly lower in the dry season than in the wet season,with the average highest PBLH in the dry season and the wet season being~1050 m and~1200 m respectively.Compared to the wet season,the development of PBLH in the dry season was delayed by at least one hour due to the seasonal cycle of solar radiation.Episode analysis indicated that the PBLH was~50%higher during clean episodes than during haze episodes.The average highest PBLH in the haze episodes and clean episodes were~800 m and~1300 m,respectively.A significant negative correlation between PBLH and PM_(2.5) concentration(r=-0.55**)is discovered.According to China"Ambient Air Quality Standard",the PBLH values in good and slightly polluted conditions were 1/6-1/3 lower than that in excellent conditions,while the corresponding PM_(2.5) concentration were~2-2.5 times higher.展开更多
The global planetary boundary layer height(PBLH)estimated from 11 years(2007–17)of Integrated Global Radiosonde Archive(IGRA)data,Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)soundings...The global planetary boundary layer height(PBLH)estimated from 11 years(2007–17)of Integrated Global Radiosonde Archive(IGRA)data,Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)soundings,and European Center for Medium-Range Weather Forecasts(ECMWF)interim reanalysis(ERAInterim)data,are compared in this study.In general,the spatial distribution of global PBLH derived from ERAInterim is consistent with the one from IGRA,both at 1200 UTC and 0000 UTC.High PBLH occurs at noon local time,because of strong radiation energy and convective activity.There are larger differences between the results of COSMIC and the other two datasets.PBLHs derived from COSMIC are much higher than those from radiosonde and reanalysis data.However,PBLHs derived from the three datasets all exhibit higher values in the low latitudes and lower ones in the high latitudes.The latitudinal difference between IGRA and COSMIC ranges from−1700 m to−500 m,while it ranges from−500 m to 250 m for IGRA and ERA-Interim.It is found that the differences among the three datasets are larger in winter and smaller in summer for most studied latitudes.展开更多
Monthly means of boundary layer height (BLH) over West Africa are presented based on 36 years (1979-2014) of six-hourly ERA-Interim reanalysis. In this region, we found that there is a link between the West Africa Mon...Monthly means of boundary layer height (BLH) over West Africa are presented based on 36 years (1979-2014) of six-hourly ERA-Interim reanalysis. In this region, we found that there is a link between the West Africa Monsoon (WAM) and the monthly means of BLH in the summer. The trend and empirical orthogonal function (EOF) of BLH are presented, including the mid July variability of BLH with the precipitation. The dominant EOF of BLH accounts for around 42% of the variance with slightly large amplitude in the north while relatively small in the equatorial band. The second EOF which accounts for 16.4%, describes a longitudinal contrast with a zonal gradient. The relationship between BLH and precipitation is found using the canonical correlation analysis (CCA). Significant trends of the first and second pairs of BLH with precipitation are shown. The first and second CCA pair has a correlation of 68% and 60% with 12.2 and 10.8 degrees of freedom respectively. The critical correlation coefficients at the 95% level are 0.21 and 0.65 for the first and second CCA pairs respectively. This first CCA pair mostly determines the arid and semi-arid areas where the rate of explained regional variance is about 78% in the arid area and 73% in the semi-arid area. For the second pair of CCA, the rate of explained regional variance is more than 60% in the Guinea coast and wet equatorial area.展开更多
By using the eight-times-daily sampling data from an intensive radiosonde observation campaign at Yichang(111°18′E,30°42′N),China in August 2006 and January 2007,the diurnal variation of the planetary boun...By using the eight-times-daily sampling data from an intensive radiosonde observation campaign at Yichang(111°18′E,30°42′N),China in August 2006 and January 2007,the diurnal variation of the planetary boundary layer height determined by using a bulk Richardson(Ri)number approach,was studied in this paper.It was found that the boundary layer heights in both summer and winter months showed diurnal changes and the daily cycle was deeper in summer,which agreed well with the previous studies;the monthly averaged height was 103–1112 m and 89–450 m in summer and winter,respectively;the morning rise began at 0700 LT/1000 LT in summer/winter and the evening transition occurred at 1900 LT in both seasons;the maximum height occurred in the afternoon for most cases,except some peaks found in the winter night;the surface temperature and relative humidity dominated the variations of summer height,while the diurnal variation shown in January 2007 might have some connections with the dynamical processes in the lower troposphere,besides the surface effects.展开更多
Atmospheric boundary layer height(ABLH)is an important parameter used to depict characteristics of the planetary boundary layer(PBL)in the lower troposphere.The ABLH is strongly associated with the vertical distributi...Atmospheric boundary layer height(ABLH)is an important parameter used to depict characteristics of the planetary boundary layer(PBL)in the lower troposphere.The ABLH is strongly associated with the vertical distributions of heat,mass,and energy in the PBL,and it is a key quantity in numerical simulation of the PBL and plays an essential role in atmospheric environmental assessment.In this paper,various definitions and methods for deriving and estimating the ABLH are summarized,from the perspectives of turbulent motion,PBL dynamics and thermodynamics,and distributions of various substances in the PBL.Different methods for determining the ABLH by means of direct observation and remote sensing retrieval are reviewed,and comparisons of the advantages and disadvantages of these methods are presented.The paper also summarizes the ABLH parameterization schemes,discusses current problems in the estimation of ABLH,and finally points out the directions for possible future breakthroughs in the ABLHrelated research and application.展开更多
The characteristics of the atmospheric boundary layer height over the global ocean were studied based on the Constellation Observation System of Meteorology,Ionosphere and Climate(COSMIC) refractivity data from 2007 t...The characteristics of the atmospheric boundary layer height over the global ocean were studied based on the Constellation Observation System of Meteorology,Ionosphere and Climate(COSMIC) refractivity data from 2007 to2012.Results show that the height is much characteristic of seasonal,inter-annual and regional variation.Globally,the spatial distribution of the annual mean top height shows a symmetrical zonal structure,which is more zonal in the Southern Hemisphere than in the Northern Hemisphere.The boundary layer top is highest in the tropics and gradually decreases towards higher latitudes.The height is in a range of 3 to 3.5 km in the tropics,2 to 2.5 km in the subtropical regions,and 1 to 1.5 km or even lower in middle and high latitudes.The diurnal variation of the top height is not obvious,with the height varying from tens to hundreds of meters.Furthermore,it is different from region to region,some regions have the maximum height during 9:00 to 12:00,others at 15:00 to18:00.展开更多
The variations of the marine atmospheric boundary layer (MABL) associated with the South China Sea Summer Monsoon were examined using the Global Positioning System (GPS) sounding datasets obtained four times daily dur...The variations of the marine atmospheric boundary layer (MABL) associated with the South China Sea Summer Monsoon were examined using the Global Positioning System (GPS) sounding datasets obtained four times daily during May-June 1998 on board Research Vessels Kexue 1 and Shiyan 3. The MABL height is defined as the height at the lowest level where virtual potential temperature increases by 1 K from the surface. The results indicate that the MABL height decreased over the northern South China Sea (SCS) and remained the same over the southern SCS, as sea surface temperature (SST) fell for the northern and rose for the southern SCS after the monsoon onset. Over the northern SCS, a decrease in both the SST and the surface latent-heat flux after the onset resulted in a reduction of the MABL height as well as a decoupling of MABL from clouds. It was found that MABL height reduction corresponded to rainfall occurrence. Over the southern SCS, a probable reason for the constant increase of SST and surface heat flux was the rainfall and internal atmospheric dynamics.展开更多
Vertically exploring the characteristics of the typhoon boundary layer(TBL) plays an important role in recognizing typhoon structure. The boundary layer radial direction and tangential wind characteristics of Typhoo...Vertically exploring the characteristics of the typhoon boundary layer(TBL) plays an important role in recognizing typhoon structure. The boundary layer radial direction and tangential wind characteristics of Typhoon Usagi based on the observational data of three boundary layer wind profiler stations along the route of Typhoon Usagi(No. 1319) and by combining with sounding data. The results show that:(1) maximum tangential wind appears in the vicinity of the eye area of Usagi, and it basically maintains a height of around 1 800 m when Usagi keeps a strong typhoon level, with the rapidly decreasing strength of Usagi after it lands, the speed of the maximum tangential wind and its vertical range both decrease;(2) the height of the maximum tangential wind is close to that of the inflow layer top of the typhoon, and is greater than that of the boundary layer estimated on the basis of Richardson number or potential temperature gradient, while the height of mixed layer judged on the basis of the signal-to-noise ratio(SNR) or its gradient is usually low;(3) the the boundary layer height can reach higher than2 100 m before Usagi lands. When the typhoon level or above is achieved, the boundary layer height observed by various stations does not change much, basically staying at between 1 200 and 1 600 m. With the decreasing strength of Usagi after its landfall, the boundary layer height rapidly drops.展开更多
This study identifies quantitatively the dominant contributions of meteorological factors on the development of the boundary layer heights(BLH)in the European region,based on 32 years(1990-2021)of radiosonde observati...This study identifies quantitatively the dominant contributions of meteorological factors on the development of the boundary layer heights(BLH)in the European region,based on 32 years(1990-2021)of radiosonde observations.The spatial variability of the BLH is further discussed by location,by classifying recording stations as inland,coastal,or bay.We find that the BLH in Europe varies considerably from day to night and with the seasons.Nighttime BLH is higher in winter and lower in summer,with the highest BLH recorded at coastal stations.Daytime BLH at coastal stations shows a bimodal structure with peaks in spring and autumn;at inland and bay stations,daytime BLH is lower in winter and higher in summer.The daily amplitudes of BLH at the inland and bay stations are stronger than those at coastal stations.Based on our multiple linear regression analysis and our decoupling analysis of temperature and specific humidity,we report that the development of the nighttime BLH at all types of stations is strongly dominated by the variations of surface wind speed(and,at coastal stations,wind directions).The main contributors to daytime BLH are the near-surface temperature variability at most coastal and inland stations,and,at most bay stations,the variation of the near-surface specific humidity.展开更多
Based on a comprehensive analysis on Sonic Anemometer and gradient data, wind profile radar(WPR) and GPS sounding data of March–August 2008 from the boundary layer(BL) tower observation system at Dali on the southeas...Based on a comprehensive analysis on Sonic Anemometer and gradient data, wind profile radar(WPR) and GPS sounding data of March–August 2008 from the boundary layer(BL) tower observation system at Dali on the southeastern edge of Tibetan Plateau(TP), it is found that the strengths of turbulent kinetic energy(TKE), buoyancy term and shear term depend on vegetation cover in association with local stability and thermodynamic condition. Strong kinetic turbulence appears when near surface layer in neutral condition with the large contribution from shear term. In an unstable condition within near surface layer, the atmospheric turbulent motion is mainly thermal turbulence, as buoyancy term is obviously larger than shear term. Under a stable condition the intermittent turbulence is accompanied by weak shear and buoyancy term, and TKE is significantly less than neutral or instable condition. The study also presents that the buoyancy term contribution at Nyingchi station in the southern slopes of the TP large topography in spring is significantly larger than that at Dali over the southeastern TP edge, reflecting that the thermal turbulence makes an important contribution to convection activity in the southern slopes of TP. Dali station is located in complex terrain with mountain and valley leading to larger kinetic turbulence. From the perspective of interaction of turbulence-convection in different scales, the study revealed that the height of convective boundary layer(CBL) could reach up to 1500–2000 m. TKE, shear term, and buoyancy term in near surface layer have the notable correlations with BL height and local vertical motion. The daytime thermodynamic turbulence effect of heat flux and buoyancy term has an obvious impact on the height of CBL, whereas mechanical turbulence only exerts a less impact. Mechanical turbulence in near surface layer has a significant impact on vertical motion especially in the forenoon with impacting height of 2500–3000 m. The peaks in diurnal variations of shear term and buoyancy term correspond to the high instable periods, especially in summer forenoon. Our observation analysis characterized the convection activity triggered by TKE source and their interaction in the southeastern TP edge.展开更多
A study was conducted on aerosol-radiation interactions over six cities in this region within the 2015–2019 period.WRF-Chem simulations on 2017 showed that based on the six-city average,the aerosol load(PM_(2.5)conce...A study was conducted on aerosol-radiation interactions over six cities in this region within the 2015–2019 period.WRF-Chem simulations on 2017 showed that based on the six-city average,the aerosol load(PM_(2.5)concentrations)of 121.9,49.6,43.3,and 66.3μg/m^(3)in January,April,July,and October,mainly lowered the level of downward shortwave radiation by 38.9,24.0,59.1,and 24.4 W/m~2and reduced the boundary layer height by 79.9,40.8,87.4,and 31.0 m,via scattering and absorbing solar radiation.The sensitivity of meteorological changes to identical aerosol loads varied in the order July>January>October and April.Then,the cooling and stabilizing effects of aerosols further led to increases in PM_(2.5),by23.0,3.4,4.6,and 7.3μg/m^(3)respectively in the four months.The sensitivity of the effect of aerosols on PM_(2.5)was greatest in January rather than in July,contrary to the effect on meteorology.Moreover,a negative linear relation was observed between daily BLH reductions and aerosol loads in fall and winter,and between PM_(2.5)increases and aerosol loads in all seasons.With the PM_(2.5)pollution improvements in this region,the aerosol radiative forcing was effectively reduced.This should result in daily BLH increases of 10–24 m in fall and winter,and the estimates in Beijing agreed well with the corresponding results based on AMDAR data.Additionally,the reduction in aerosol radiation effects brought about daily PM_(2.5)decreases of 1.6-2.8μg/m^(3),accounting for 7.0%–17.7%in PM_(2.5)improvements.展开更多
We detected a severe haze process in Guangzhou area with lidar and microwave radiometer, performed an inversion to get boundary layer height by wavelet covariance transform, and analyzed the correlation between meteor...We detected a severe haze process in Guangzhou area with lidar and microwave radiometer, performed an inversion to get boundary layer height by wavelet covariance transform, and analyzed the correlation between meteorological factors of boundary layer and visibility from the perspective of dynamical and thermodynamic structures. Our results indicate that the boundary layer height shows significant daily changes, consistent with ground visibility variation. During the cleaning process, the boundary layer height exceeded 1 km; during severe haze, the height was only 500 m. Temperature gradient of 50–100 m, which was 30 h lag, was remarkably correlated with visibility, with the correlation coefficient of 0.77. High layer visibility(255 m) and low layer stability were significantly anticorrelation, and the maximum anticorrelation coefficient was up to-0.76 in cleaning days and-0.49 in haze days. In the related boundary layer meteorological factors, surface ventilation coefficient was linearly correlated with ground visibility, with the greatest correlation coefficient of 0.88. The correlation coefficients of boundary layer height, ground wind velocity, relative humidity and ground visibility were 0.76, 0.67, and-0.77, respectively. There was a strong correlation between different meteorological factors. The dominant meteorological factor during this haze process was surface ventilation coefficient. In the area without boundary layer height sounding, ground visibility and wind velocity could be used to estimate boundary layer height.展开更多
Spillway tunnels are a key structure in large-scale water conservancies. The high-head water inlet makes the water surface-velocity extremely high, and the air is driven by the free surface of the water to move downst...Spillway tunnels are a key structure in large-scale water conservancies. The high-head water inlet makes the water surface-velocity extremely high, and the air is driven by the free surface of the water to move downstream. This paper studies the air velocity distribution above the water surface through the model tests, under the assumption that the airflow is a turbulent boundary layer with a rough interface, and the influence of the water depth and the water velocity on the air velocity distribution is analyzed. It is shown that the air velocity is in an exponential distribution. As the measured position moves upward, the air velocity gradually decreases, and the gradient decreases. When the water depth increases, the air velocity increases but with the same distribution form. With the increase of the water surface-velocity, the air velocity at the same measuring point increases, the variation range near the water surface is large, the air boundary layer height increases slightly, and the index coefficient of the air velocity distribution function decreases. Through numerical fitting, the calculation formula of the air boundary layer thickness at different water surface velocities is obtained, along with the numerical value of the index coefficient.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 91544231)the State Key Research and Development Program of China (Grant No. 2016YFC0200500)+1 种基金Jiangsu Provincial Collaborative Innovation Center of Climate ChangeJun ZOU was also supported by the Program for Outstanding Ph D Candidates of Nanjing University
文摘Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 W m-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.
基金supported by the China Meteorological Administration under Grant GYHY201006024the Chinese Academy of Sciences Strategic Priority Research Program under Grant XDA05110104spon-sorship of National Science Foundation
文摘Utilizing aircraft sounding data collected from the Surface Heat Budget of the Arctic Ocean (SHEBA, 1998) campaign, the authors evaluated commonly-used profile methods for Arctic ABL height estimation by validating against the'true'ABL height from aircraft sounding profiles, where ABL height is defined as the top of the layer with significant turbulence. Furthermore, the best performing method was used to estimate ABL height from the one-year GPS soundings obtained during SHEBA (October 1997-October 1998). It was found that the temperature gradient method produces a reliable estimate of ABL height. Additionally, the authors determined optimal threshold values of temperature gradient for stable boundary layer (SBL) and convective boundary layer (CBL) to be 6.5 K/100 m and 1.0 K/100 m, respectively. The maximum ABL height during the year was 1150 m occurred in May. Median values of Arctic ABL height in May, June, July, and August were 400 m, 430 m, 180 m, and 320 m, respectively. Arctic ABL heights are clearly higher in the spring than in the summer.
基金National Key R&D Program Pilot Projects of China(2016YFC203300)Major Program of National Natural Science Foundation of China(91644223)+2 种基金Special Funding Project for Public Industry Research and Development of Ministry of Environmental Protection(201509001)National Natural Science Foundation of China(9133700041575008)
文摘The planetary boundary layer height(PBLH) was calculated using the radiosonde sounding data, including120 L-band operational sites and 8 GPS sites in China. The diurnal and seasonal variations of PBLH were analyzed using radiosonde sounding(OBS-PBLH) and ERA data(ERA-PBLH). Based on comparison and error analyses, we discussed the main error sources in these data. The frequency distributions of PBLH variations under different regimes(the convective boundary layer, the neutral residual layer, and the stable boundary layer) can be well fitted by a Gamma distribution and the shape parameter k and scale parameter s values were obtained for different regions of China. The variation characteristics of PBLH were found in summer under these three regimes for different regions. The relationships between PBLH and PM_(2.5) concentration generally follow a power law under very low or no precipitation conditions in the region of Beijing, Tianjin and Hebei in summer. The results usually deviated from this power distribution only under strong precipitation or high relative humidity conditions because of the effects of hygroscopic growth of aerosols or wet deposition. The OBS-PBLH provided a reasonable spatial distribution relative to ERA-PBLH.This indicates that OBS-PBLH has the potential for identifying the variation of PM_(2.5) concentration.
基金supported by the National Natural Science Foundation of China (Grant No. 41475021)
文摘This paper presents a new method to estimate the height of the atmospheric boundary layer(ABL) by using COSMIC radio occultation bending angle(BA) data. Using the numerical differentiation method combined with the regularization technique, the first derivative of BA profiles is retrieved, and the height at which the first derivative of BA has the global minimum is defined to be the ABL height. To reflect the reliability of estimated ABL heights, the sharpness parameter is introduced, according to the relative minimum of the BA derivative. Then, it is applied to four months of COSMIC BA data(January, April, July, and October in 2008), and the ABL heights estimated are compared with two kinds of ABL heights from COSMIC products and with the heights determined by the finite difference method upon the refractivity data. For sharp ABL tops(large sharpness parameters), there is little difference between the ABL heights determined by different methods, i.e.,the uncertainties are small; whereas, for non-sharp ABL tops(small sharpness parameters), big differences exist in the ABL heights obtained by different methods, which means large uncertainties for different methods. In addition, the new method can detect thin ABLs and provide a reference ABL height in the cases eliminated by other methods. Thus, the application of the numerical differentiation method combined with the regularization technique to COSMIC BA data is an appropriate choice and has further application value.
基金supported by the National Key R&D Program of China (2016YFC0201507)the National Natural Science Foundation of China (Grant Nos. 41471367, 91543128 and 41571417)
文摘Few studies have specifically focused on the validation and spatiotemporal distribution of planetary boundary layer height (PBLH) and relative humidity (RH) data in China. In this analysis, continuous PBLH and surface-level RH data simulated from GEOS-5 between 2004 and 2012, were validated against ground-based observations. Overall, the simulated RH was consistent with the statistical data from meteorological stations, with a correlation coefficient of 0.78 and a slope of 0.9. However, the simulated PBLH was underestimated compared to LIDAR data by a factor of approximately two, which was primarily because of poor simulation in late summer and early autumn. We further examined the spatiotemporal distribution characteristics of two factors in four regions--North China, South China, Northwest China, and the Tibetan Plateau. The results showed that the annual PBLH trends in all regions were fairly moderate but sensitive to solar radiation and precipitation, which explains why the PBLH values were ranked in order from largest to smallest as follows: Tibetan Plateau, Northwest China, North China, and South China. Strong seasonal variation of the PBLH exhibited high values in summer and low values in winter, which was also consistent with the turbulent vertical exchange. Not surprisingly, the highest RH in South China and the lowest RH in desert areas of Northwest China (less than 30%). Seasonally, South China exhibited little variation, whereas Northwest China exhibited its highest humidity in winter and lowest humidity in spring, the maximum values in the other regions were obtained from July to September.
文摘Although coherent Doppler wind lidar(CDWL)is promising in detecting boundary layer height(BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution for BLH detections with CDWL is proposed and demonstrated:mixed layer height(MLH)is retrieved best from turbulent kinetic energy dissipation rate(TKEDR),while stable boundary layer height(SBLH)and residual layer height(RLH)can be retrieved from carrier-to-noise ratio(CNR).To study the cause of the BLH differences,an intercomparison experiment is designed with two identical CDWLs,where only one is equipped with a stability control subsystem.During the experiment,it is found that the CNR could be distorted by instrument instability because the coupling efficiency from free-space to the polarization-maintaining fiber of the telescope is sensitive to the surrounding environment.In the ML,a bias up to 2.13 km of the MLH from CNR is found,which is caused by the CNR deviation.In contrast,the MLH from TKEDR is robust as long as the accuracy of wind is guaranteed.In the SBL(RL),the CNR is found capable to retrieve SBLH and RLH simultaneously and robustly.This solution is tested during an observation period over one month.Statistical analysis shows that the root-mean-square errors(RMSE)in the MLH,SBLH,and RLH are 0.28 km,0.23 km,and 0.24 km,respectively.
基金This work was supported by the Meteorological Research Open Foundation of Huaihe Basin(HRM201604).
文摘Diurnal variations in the planetary boundary layer height(PBLH)at different latitudes over different surface characteristics are described,based on 45 years(1973−2017)of radiosonde observations.The PBLH is determined from the radiosonde data by the bulk Richardson number(BRN)method and verified by the parcel method and the potential temperature gradient method.In general,the BRN method is able to represent the height of the convective boundary layer(BL)and neutral residual layer cases but has relatively large uncertainty in the stable BL cases.The diurnal cycle of the PBLH over land is quite different from the cycle over ocean,as are their seasonal variations.For stations over land,the PBLH shows an apparent diurnal cycle,with a distinct maximum around 15:00 LT,and seasonal variation,with higher values in summer.Compared with the PBLH over land,over oceans the PBLH diurnal cycles are quite mild,the PBLHs are much lower,and the seasonal changes are less pronounced.The seasonal variations in the median PBLH diurnal cycle are positively correlated with the near-surface temperature and negatively correlated with the near-surface relative humidity.Finally,although at most latitudes the daytime PBLH exhibits,over these 45 years,a statistically significant increasing trend at most hours between 12:00 LT and 18:00 LT over both land and ocean,there is no significant trend over either land or ocean in the nighttime PBLH for almost all the studied latitudes.
基金National Key R&D Program of China(2019YFC0214605,2018YFC0213901)National Natural Science Foundation of China(41775037)+1 种基金Guangdong Provincial Key R&D Program(2020B1111360003)Scientific and Technological Innovation Team Project of Guangdong Meteorological Service(GRMCTD202003)。
文摘Wavelet analysis was applied to lidar observations to retrieve the planetary boundary layer height(PBLH)over Guangzhou from September 2013 to November 2014 over Guangzhou.Impact of the boundary effect and the wavelet scale factor on the accuracy of the retrieved PBLH has been explored thoroughly.In addition,the PBLH diurnal variations and the relationship between PM_(2.5) concentration and PBLH during polluted and clean episodes were studied.Results indicate that the most steady retrieved PBLH can be obtained when scale factor is chosen between 300-390 m.The retrieved maximum and minimum PBLH in the annual mean diurnal cycle were~1100 m and~650 m,respectively.The PBLH was significantly lower in the dry season than in the wet season,with the average highest PBLH in the dry season and the wet season being~1050 m and~1200 m respectively.Compared to the wet season,the development of PBLH in the dry season was delayed by at least one hour due to the seasonal cycle of solar radiation.Episode analysis indicated that the PBLH was~50%higher during clean episodes than during haze episodes.The average highest PBLH in the haze episodes and clean episodes were~800 m and~1300 m,respectively.A significant negative correlation between PBLH and PM_(2.5) concentration(r=-0.55**)is discovered.According to China"Ambient Air Quality Standard",the PBLH values in good and slightly polluted conditions were 1/6-1/3 lower than that in excellent conditions,while the corresponding PM_(2.5) concentration were~2-2.5 times higher.
基金supported by the Meteorological Research Open Foundation of Huaihe Basin grant number HRM201604。
文摘The global planetary boundary layer height(PBLH)estimated from 11 years(2007–17)of Integrated Global Radiosonde Archive(IGRA)data,Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)soundings,and European Center for Medium-Range Weather Forecasts(ECMWF)interim reanalysis(ERAInterim)data,are compared in this study.In general,the spatial distribution of global PBLH derived from ERAInterim is consistent with the one from IGRA,both at 1200 UTC and 0000 UTC.High PBLH occurs at noon local time,because of strong radiation energy and convective activity.There are larger differences between the results of COSMIC and the other two datasets.PBLHs derived from COSMIC are much higher than those from radiosonde and reanalysis data.However,PBLHs derived from the three datasets all exhibit higher values in the low latitudes and lower ones in the high latitudes.The latitudinal difference between IGRA and COSMIC ranges from−1700 m to−500 m,while it ranges from−500 m to 250 m for IGRA and ERA-Interim.It is found that the differences among the three datasets are larger in winter and smaller in summer for most studied latitudes.
文摘Monthly means of boundary layer height (BLH) over West Africa are presented based on 36 years (1979-2014) of six-hourly ERA-Interim reanalysis. In this region, we found that there is a link between the West Africa Monsoon (WAM) and the monthly means of BLH in the summer. The trend and empirical orthogonal function (EOF) of BLH are presented, including the mid July variability of BLH with the precipitation. The dominant EOF of BLH accounts for around 42% of the variance with slightly large amplitude in the north while relatively small in the equatorial band. The second EOF which accounts for 16.4%, describes a longitudinal contrast with a zonal gradient. The relationship between BLH and precipitation is found using the canonical correlation analysis (CCA). Significant trends of the first and second pairs of BLH with precipitation are shown. The first and second CCA pair has a correlation of 68% and 60% with 12.2 and 10.8 degrees of freedom respectively. The critical correlation coefficients at the 95% level are 0.21 and 0.65 for the first and second CCA pairs respectively. This first CCA pair mostly determines the arid and semi-arid areas where the rate of explained regional variance is about 78% in the arid area and 73% in the semi-arid area. For the second pair of CCA, the rate of explained regional variance is more than 60% in the Guinea coast and wet equatorial area.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2012CB825605)the National Natural Science Foundation of China(Grant No.41304125)ZHANG YeHui acknowledges support from the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘By using the eight-times-daily sampling data from an intensive radiosonde observation campaign at Yichang(111°18′E,30°42′N),China in August 2006 and January 2007,the diurnal variation of the planetary boundary layer height determined by using a bulk Richardson(Ri)number approach,was studied in this paper.It was found that the boundary layer heights in both summer and winter months showed diurnal changes and the daily cycle was deeper in summer,which agreed well with the previous studies;the monthly averaged height was 103–1112 m and 89–450 m in summer and winter,respectively;the morning rise began at 0700 LT/1000 LT in summer/winter and the evening transition occurred at 1900 LT in both seasons;the maximum height occurred in the afternoon for most cases,except some peaks found in the winter night;the surface temperature and relative humidity dominated the variations of summer height,while the diurnal variation shown in January 2007 might have some connections with the dynamical processes in the lower troposphere,besides the surface effects.
基金Supported by the National Key Research and Development Program of China(2016YFC0203300 and 2017YFC0209600)National Research Program for Key Issues in Air Pollution Control(DQGG0104 and DQGG0106)National Natural Science Foundation of China(91544216).
文摘Atmospheric boundary layer height(ABLH)is an important parameter used to depict characteristics of the planetary boundary layer(PBL)in the lower troposphere.The ABLH is strongly associated with the vertical distributions of heat,mass,and energy in the PBL,and it is a key quantity in numerical simulation of the PBL and plays an essential role in atmospheric environmental assessment.In this paper,various definitions and methods for deriving and estimating the ABLH are summarized,from the perspectives of turbulent motion,PBL dynamics and thermodynamics,and distributions of various substances in the PBL.Different methods for determining the ABLH by means of direct observation and remote sensing retrieval are reviewed,and comparisons of the advantages and disadvantages of these methods are presented.The paper also summarizes the ABLH parameterization schemes,discusses current problems in the estimation of ABLH,and finally points out the directions for possible future breakthroughs in the ABLHrelated research and application.
文摘The characteristics of the atmospheric boundary layer height over the global ocean were studied based on the Constellation Observation System of Meteorology,Ionosphere and Climate(COSMIC) refractivity data from 2007 to2012.Results show that the height is much characteristic of seasonal,inter-annual and regional variation.Globally,the spatial distribution of the annual mean top height shows a symmetrical zonal structure,which is more zonal in the Southern Hemisphere than in the Northern Hemisphere.The boundary layer top is highest in the tropics and gradually decreases towards higher latitudes.The height is in a range of 3 to 3.5 km in the tropics,2 to 2.5 km in the subtropical regions,and 1 to 1.5 km or even lower in middle and high latitudes.The diurnal variation of the top height is not obvious,with the height varying from tens to hundreds of meters.Furthermore,it is different from region to region,some regions have the maximum height during 9:00 to 12:00,others at 15:00 to18:00.
基金supported by the Chinese Academy of Sciences (Grant No. KZCX1-YW-12-01)the National Natural Science Foundation of China (Grant Nos. U0733002 and 40876009)The National Basic Research Program of China (Grant No. 2011CB403504)
文摘The variations of the marine atmospheric boundary layer (MABL) associated with the South China Sea Summer Monsoon were examined using the Global Positioning System (GPS) sounding datasets obtained four times daily during May-June 1998 on board Research Vessels Kexue 1 and Shiyan 3. The MABL height is defined as the height at the lowest level where virtual potential temperature increases by 1 K from the surface. The results indicate that the MABL height decreased over the northern South China Sea (SCS) and remained the same over the southern SCS, as sea surface temperature (SST) fell for the northern and rose for the southern SCS after the monsoon onset. Over the northern SCS, a decrease in both the SST and the surface latent-heat flux after the onset resulted in a reduction of the MABL height as well as a decoupling of MABL from clouds. It was found that MABL height reduction corresponded to rainfall occurrence. Over the southern SCS, a probable reason for the constant increase of SST and surface heat flux was the rainfall and internal atmospheric dynamics.
基金The National Natural Science Foundation of China under contract Nos 41305029 and 41475014the Science and Technology Planning Project of Guangdong Province of China under contract No.2013B020200013+1 种基金the Guangzhou Municipal Science and Technology Planning Project of China under contract No.201604020069the Meteorological Key Technology Integration and Application Projects of China Meteorological Administration under contract No.CMAGJ2015M42
文摘Vertically exploring the characteristics of the typhoon boundary layer(TBL) plays an important role in recognizing typhoon structure. The boundary layer radial direction and tangential wind characteristics of Typhoon Usagi based on the observational data of three boundary layer wind profiler stations along the route of Typhoon Usagi(No. 1319) and by combining with sounding data. The results show that:(1) maximum tangential wind appears in the vicinity of the eye area of Usagi, and it basically maintains a height of around 1 800 m when Usagi keeps a strong typhoon level, with the rapidly decreasing strength of Usagi after it lands, the speed of the maximum tangential wind and its vertical range both decrease;(2) the height of the maximum tangential wind is close to that of the inflow layer top of the typhoon, and is greater than that of the boundary layer estimated on the basis of Richardson number or potential temperature gradient, while the height of mixed layer judged on the basis of the signal-to-noise ratio(SNR) or its gradient is usually low;(3) the the boundary layer height can reach higher than2 100 m before Usagi lands. When the typhoon level or above is achieved, the boundary layer height observed by various stations does not change much, basically staying at between 1 200 and 1 600 m. With the decreasing strength of Usagi after its landfall, the boundary layer height rapidly drops.
基金supported by the National Key Research and Development Program of China(NO.2021YFC2802502)sponsored by the China Scholarship Council Fund.
文摘This study identifies quantitatively the dominant contributions of meteorological factors on the development of the boundary layer heights(BLH)in the European region,based on 32 years(1990-2021)of radiosonde observations.The spatial variability of the BLH is further discussed by location,by classifying recording stations as inland,coastal,or bay.We find that the BLH in Europe varies considerably from day to night and with the seasons.Nighttime BLH is higher in winter and lower in summer,with the highest BLH recorded at coastal stations.Daytime BLH at coastal stations shows a bimodal structure with peaks in spring and autumn;at inland and bay stations,daytime BLH is lower in winter and higher in summer.The daily amplitudes of BLH at the inland and bay stations are stronger than those at coastal stations.Based on our multiple linear regression analysis and our decoupling analysis of temperature and specific humidity,we report that the development of the nighttime BLH at all types of stations is strongly dominated by the variations of surface wind speed(and,at coastal stations,wind directions).The main contributors to daytime BLH are the near-surface temperature variability at most coastal and inland stations,and,at most bay stations,the variation of the near-surface specific humidity.
基金supported by the National Natural Science Foundation of China(Grant Nos.41130960,41165001,41175010)the China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201406001)
文摘Based on a comprehensive analysis on Sonic Anemometer and gradient data, wind profile radar(WPR) and GPS sounding data of March–August 2008 from the boundary layer(BL) tower observation system at Dali on the southeastern edge of Tibetan Plateau(TP), it is found that the strengths of turbulent kinetic energy(TKE), buoyancy term and shear term depend on vegetation cover in association with local stability and thermodynamic condition. Strong kinetic turbulence appears when near surface layer in neutral condition with the large contribution from shear term. In an unstable condition within near surface layer, the atmospheric turbulent motion is mainly thermal turbulence, as buoyancy term is obviously larger than shear term. Under a stable condition the intermittent turbulence is accompanied by weak shear and buoyancy term, and TKE is significantly less than neutral or instable condition. The study also presents that the buoyancy term contribution at Nyingchi station in the southern slopes of the TP large topography in spring is significantly larger than that at Dali over the southeastern TP edge, reflecting that the thermal turbulence makes an important contribution to convection activity in the southern slopes of TP. Dali station is located in complex terrain with mountain and valley leading to larger kinetic turbulence. From the perspective of interaction of turbulence-convection in different scales, the study revealed that the height of convective boundary layer(CBL) could reach up to 1500–2000 m. TKE, shear term, and buoyancy term in near surface layer have the notable correlations with BL height and local vertical motion. The daytime thermodynamic turbulence effect of heat flux and buoyancy term has an obvious impact on the height of CBL, whereas mechanical turbulence only exerts a less impact. Mechanical turbulence in near surface layer has a significant impact on vertical motion especially in the forenoon with impacting height of 2500–3000 m. The peaks in diurnal variations of shear term and buoyancy term correspond to the high instable periods, especially in summer forenoon. Our observation analysis characterized the convection activity triggered by TKE source and their interaction in the southeastern TP edge.
基金funded by the National Natural Science Foundation of China (Nos.51978010 and 52022005)。
文摘A study was conducted on aerosol-radiation interactions over six cities in this region within the 2015–2019 period.WRF-Chem simulations on 2017 showed that based on the six-city average,the aerosol load(PM_(2.5)concentrations)of 121.9,49.6,43.3,and 66.3μg/m^(3)in January,April,July,and October,mainly lowered the level of downward shortwave radiation by 38.9,24.0,59.1,and 24.4 W/m~2and reduced the boundary layer height by 79.9,40.8,87.4,and 31.0 m,via scattering and absorbing solar radiation.The sensitivity of meteorological changes to identical aerosol loads varied in the order July>January>October and April.Then,the cooling and stabilizing effects of aerosols further led to increases in PM_(2.5),by23.0,3.4,4.6,and 7.3μg/m^(3)respectively in the four months.The sensitivity of the effect of aerosols on PM_(2.5)was greatest in January rather than in July,contrary to the effect on meteorology.Moreover,a negative linear relation was observed between daily BLH reductions and aerosol loads in fall and winter,and between PM_(2.5)increases and aerosol loads in all seasons.With the PM_(2.5)pollution improvements in this region,the aerosol radiative forcing was effectively reduced.This should result in daily BLH increases of 10–24 m in fall and winter,and the estimates in Beijing agreed well with the corresponding results based on AMDAR data.Additionally,the reduction in aerosol radiation effects brought about daily PM_(2.5)decreases of 1.6-2.8μg/m^(3),accounting for 7.0%–17.7%in PM_(2.5)improvements.
基金supported by the National Basic Research Program of China(Grant No.2011CB403403)the National Natural Science Foundation of China(Grant Nos.41205123,41375156,1175117)Guangdong Provincial Natural Science Foundation(Grant No.10151008019000004)
文摘We detected a severe haze process in Guangzhou area with lidar and microwave radiometer, performed an inversion to get boundary layer height by wavelet covariance transform, and analyzed the correlation between meteorological factors of boundary layer and visibility from the perspective of dynamical and thermodynamic structures. Our results indicate that the boundary layer height shows significant daily changes, consistent with ground visibility variation. During the cleaning process, the boundary layer height exceeded 1 km; during severe haze, the height was only 500 m. Temperature gradient of 50–100 m, which was 30 h lag, was remarkably correlated with visibility, with the correlation coefficient of 0.77. High layer visibility(255 m) and low layer stability were significantly anticorrelation, and the maximum anticorrelation coefficient was up to-0.76 in cleaning days and-0.49 in haze days. In the related boundary layer meteorological factors, surface ventilation coefficient was linearly correlated with ground visibility, with the greatest correlation coefficient of 0.88. The correlation coefficients of boundary layer height, ground wind velocity, relative humidity and ground visibility were 0.76, 0.67, and-0.77, respectively. There was a strong correlation between different meteorological factors. The dominant meteorological factor during this haze process was surface ventilation coefficient. In the area without boundary layer height sounding, ground visibility and wind velocity could be used to estimate boundary layer height.
基金supported by the Sichuan Science and Technology Program(Grant No.2020YJ0320).
文摘Spillway tunnels are a key structure in large-scale water conservancies. The high-head water inlet makes the water surface-velocity extremely high, and the air is driven by the free surface of the water to move downstream. This paper studies the air velocity distribution above the water surface through the model tests, under the assumption that the airflow is a turbulent boundary layer with a rough interface, and the influence of the water depth and the water velocity on the air velocity distribution is analyzed. It is shown that the air velocity is in an exponential distribution. As the measured position moves upward, the air velocity gradually decreases, and the gradient decreases. When the water depth increases, the air velocity increases but with the same distribution form. With the increase of the water surface-velocity, the air velocity at the same measuring point increases, the variation range near the water surface is large, the air boundary layer height increases slightly, and the index coefficient of the air velocity distribution function decreases. Through numerical fitting, the calculation formula of the air boundary layer thickness at different water surface velocities is obtained, along with the numerical value of the index coefficient.