期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Perfection of Perovskite Grain Boundary Passivation by Rhodium Incorporation for Efficient and Stable Solar Cells 被引量:4
1
作者 Wei Liu Nanjing Liu +7 位作者 Shilei Ji Hongfeng Hua Yuhui Ma Ruiyuan Hu Jian Zhang Liang Chu Xing’ao Li Wei Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期203-213,共11页
Organic cation and halide anion defects are omnipresent in the perovskite films,which will destroy perovskite electronic structure and downgrade the properties of devices.Defect passivation in halide perovskites is cr... Organic cation and halide anion defects are omnipresent in the perovskite films,which will destroy perovskite electronic structure and downgrade the properties of devices.Defect passivation in halide perovskites is crucial to the application of solar cells.Herein,tiny amounts of trivalent rhodium ion incorporation can help the nucleation of perovskite grain and passivate the defects in the grain boundaries,which can improve efficiency and stability of perovskite solar cells.Through first-principle calculations,rhodium ion incorporation into the perovskite structure can induce ordered arrangement and tune bandgap.In experiment,rhodium ion incorporation with perovskite can contribute to preparing larger crystalline and uniform film,reducing trap-state density and enlarging charge carrier lifetime.After optimizing the content of 1% rhodium,the devices achieved an efficiency up to 20.71% without obvious hysteresis,from 19.09% of that pristine perovskite.In addition,the unencapsulated solar cells maintain 92% of its initial efficiency after 500 h in dry air.This work highlights the advantages of trivalent rhodium ion incorporation in the characteristics of perovskite solar cells,which will promote the future industrial application. 展开更多
关键词 Perovskite solar cells Grain boundary passivation Rhodium incorporation
下载PDF
Passivation engineering via silica‐encapsulated quantum dots for highly sensitive photodetection 被引量:1
2
作者 Ji Yun Chun Byung Gi Kim +2 位作者 Jin Young Kim Woongsik Jang Dong Hwan Wang 《Carbon Energy》 SCIE EI CAS CSCD 2023年第9期49-62,共14页
Organometal halide perovskites are promising semiconducting materials for photodetectors because of their favorable optoelectrical properties.Although nanoscale perovskite materials such as quantum dots(QDs)show novel... Organometal halide perovskites are promising semiconducting materials for photodetectors because of their favorable optoelectrical properties.Although nanoscale perovskite materials such as quantum dots(QDs)show novel behavior,they have intrinsic stability issues.In this study,an effectively silane barrier-capped quantum dot(QD@APDEMS)is thinly applied onto a bulk perovskite photosensitive layer for use in photodetectors.QD@APDEMS is synthesized with a silane ligand with hydrophobic CH_(3)-terminal groups,resulting in excellent dispersibility and durability to enable effective coating.The introduction of the QD@APDEMS layer results in the formation of a lowdefect perovskite film with enlarged grains.This is attributed to the grain boundary interconnection effect via interaction between the functional groups of QD@APDEMS and uncoordinated Pb^(2+)in grain boundaries.By passivating the grain boundaries,where various trap sites are distributed,hole chargecarrier injection and shunt leakage can be suppressed.Also,from the energy point of view,the deep highest occupied molecular orbital(HOMO)level of QD@APDEMS can work as a hole charge injection barrier.Improved charge dynamics(generation,transfer,and recombination properties)and reduced trap density of QD@APDEMS are demonstrated.When this perovskite film is used in a photodetector,the device performance(especially the detectivity)stands out among existing perovskites evaluated for energy sensing device applications. 展开更多
关键词 grain boundary passivation perovskite quantum dots PHOTODETECTORS photosensitive layers trap
下载PDF
Strain gradient plasticity: energetic or dissipative? 被引量:2
3
作者 N.A.Fleck J.R.Willis 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第4期465-472,共8页
Abstract For an infinite slab of strain gradient sensitive material subjected to plane-strain tensile loading, compu- tation established and analysis confirmed that passivation of the lateral boundaries at some stage ... Abstract For an infinite slab of strain gradient sensitive material subjected to plane-strain tensile loading, compu- tation established and analysis confirmed that passivation of the lateral boundaries at some stage of loading inhibits plastic deformation upon further loading. This result is not surprising in itself except that, remarkably, if the gradient terms contribute to the dissipation, the plastic deformation is switched off completely and only resumes at a clearly defined higher load, corresponding to a total strain ec, say. The analysis presented in this paper confirms the delay of plastic deformation following passivation and determines the exact manner in which the plastic flow resumes. The plastic strain rate is continuous at the exact point ec of resumption of plastic flow and, for the first small increment Ae = e - ec in the imposed total strain, the corresponding increment in plastic strain, AeP, is proportional to (Ae)2. The constant A in the relation AeP(0) = A(Ae)2, where AeP(0) denotes the plastic strain increment at the centre of the slab, has been determined explicitly; it depends on the hardening modulus of the material. The presence of energetic gradient terms has no effect on the value of ec unless the dissipative terms are absent, in which case passivation reduces the rate of plastic deformation but introduces no delay. This qualitative effect of dissipative gradient terms opens the possibility of experimen- tal discrimination of their presence or absence. The analysisemploys an incremental variational formulation that is likely to find use in other problems. 展开更多
关键词 Strain gradient plasticity boundary passivation Incremental variational principle
下载PDF
Polycrystalline Silicon Gettered by Porous Silicon and Heavy Phosphorous Diffusion 被引量:2
4
作者 刘祖明 Souleymane K Traore +1 位作者 张忠文 罗毅 《Tsinghua Science and Technology》 SCIE EI CAS 2004年第2期242-245,共4页
The biggest barrier for photovoltaic (PV) utilization is its high cost, so the key for scale PV utiliza-tion is to further decrease the cost of solar cells. One way to improve the efficiency, and therefore lower the c... The biggest barrier for photovoltaic (PV) utilization is its high cost, so the key for scale PV utiliza-tion is to further decrease the cost of solar cells. One way to improve the efficiency, and therefore lower the cost, is to increase the minority carrier lifetime by controlling the material defects. The main defects in grain boundaries of polycrystalline silicon gettered by porous silicon and heavy phosphorous diffusion have been studied. The porous silicon was formed on the two surfaces of wafers by chemical etching. Phosphorous was then diffused into the wafers at high temperature (900℃). After the porous silicon and diffusion layers were removed, the minority carrier lifetime was measured by photo-conductor decay. The results show that the lifetime抯 minority carriers are increased greatly after such treatment. 展开更多
关键词 polycrystalline gettering grain boundaries passivation porous silicon heavy phosphorous diffusion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部