期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Short-term Effects of Nitrogen Deposition on Soil Physical and Chemical Properties of Tibetan Forest-Grassland Landscape Boundary 被引量:1
1
作者 Ye Yanhui Gao Yi +3 位作者 Liu Yunlong Han Yanying Ye Hong Duan Yongbo 《Animal Husbandry and Feed Science》 CAS 2018年第4期249-256,共8页
[Objective] The paper was to study the effects of nitrogen deposition on soil nutrients and soil dissolved organic carbon in forest-grassland landscape in Linzhi, Tibet, and to provide scientific basis and basic data ... [Objective] The paper was to study the effects of nitrogen deposition on soil nutrients and soil dissolved organic carbon in forest-grassland landscape in Linzhi, Tibet, and to provide scientific basis and basic data for understanding and assessing the effect of atmospheric nitrogen deposition on soil nutrients and soil dissolved organic carbon. [Method] From July 2014 to August 2015, in situ nitrogen deposition (CK0 kg· hm^2/a, LN25 kg·hm^2/a, MN 50 kg·hm^2/a, HN 150 kg· hm^2/a) was simulated in the forestgrassland boundary of Zhuqudeng village, Bujiu Township, LinzhiCounty, Tibet. The soil samples were collected for analyzing nutrient and dissolved contents in the soil layer of 0-20 and 20-40 cm. The effects ofdifferent nitrogen deposition levels on soil nutrients and dissolved organic carbon (DOC) were studied. [Result] Nitrogen deposition had significantimpacts on soil organic matter, total N, total P, total K, available N, available P, available K, exchangeable Ca, exchangeable Mg, pH, and DOC(P〈0.05). (2) With the deepening of nitrogen deposition from CK, LN, MN to HN in the 0-20 cm boundary soil, the contents of organic matter, total N,total P, available P, exchangeable Ca, exchangeable Mg and DOC kept decreasing, and the content of total K and available N increased continuously. The pH increased in LN treatment and decreased in HN treatment, while the available K content was decreased in LN and HN treatment, butincreased in MN treatment. (3) The contents of organic matter, total N, total P, available N, available P, exchangeable Ca, exchangeable Mg andDOC all decreased at the soil layer of 20-40 cm under the same nitrogen deposition. The pH increased in LN treatment, but decreased in HN treatment; the content of total K decreased in LN treatment and increased in MN and HN treatments; the content of available K decreased in LN andHN treatments, but increased in MN treatment. (4) With the deepening of boundary soil layer (0-20 to 20-40 cm), the organic matter, total N, totalP, available P, available K, exchangeable Ca, exchangeable Mg, DOC showed the same response to simulated nitrogen deposition, while the available N and total K responded differently. [Conclusion] Different levels of N deposition had certain impact on soil nutrient, and the variation of soilnutrients was not the same at different levels. 展开更多
关键词 Nitrogen deposition Linzhi boundary soil soil nutrients soil dissolved organic carbon Forestgrassland
下载PDF
The Effect of Nitrogen Deposition on Soil Enzyme Activity in the Forest Grassland Landscape Boundary of Tibet
2
作者 HAN Yanying LIU Yunlong +5 位作者 YE Yanhui DA Buqiong GAO Yi ZHAO Yalei LI Linwei LIU Shuanghao 《Journal of Landscape Research》 2018年第4期93-98,共6页
The simulated nitrogen deposition [control check (CBQ, 0 kg'hm^2 /a; low nitrogen (LN), 25 kg-hm^2 /a; medium nitrogen (MN), 50 kg-hm^2/a high nitrogen (HN), 150 kg·hm^2 /a] was performed from July 2014 ... The simulated nitrogen deposition [control check (CBQ, 0 kg'hm^2 /a; low nitrogen (LN), 25 kg-hm^2 /a; medium nitrogen (MN), 50 kg-hm^2/a high nitrogen (HN), 150 kg·hm^2 /a] was performed from July 2014 to August 2015 in the fotest-gtassland boundary in Zhuqudeng Village, Bujiu Township, Iinzhi City, Tibet Autonomous Regioii to analyze the activity of enzymes (invertase, catalase, ufease, amylase, cellukse, polyphenol oxidase, and p-glucosidase) in soil layers of 0-20 cm and 20-40 cm and explore die effect of different levels of nitrogen deposition on enzyme activity different layers of soiL The results showed tiiat' ① different levels of simulated nitrogen deposition had rematkable effects on sucrase, amylase, cellukse, polyphenol oxidase and p-gjucosidase in the soil layer of 0-20 cm (p 〈 0.05) and unrematkable effects on catalase and urease (p 〉 0.05); in the soil layer of 2CM0 cm, the response made by suctase, catalase, urease, amylase, cellulase, polyphenol oxidase and p-glucosidase to nitrogen deposition reached a significant level 〈 0.05).② In the soil layer of 0-20 cm, the activity of ufease and polyphenol oxidase reduced under LN treatment and enhanced under HN treatment, and the activity of invertase, catalase, amylase, cellulose, and p-glucosidase was inhibited by nitrogen deposition. ③In the soil layer of 2CM0 cm, the activity of polyphenol oxidase and p-glucosidase reduced under under LN treatment and enhanced under HN treatment, and the activity of invertase, catalase, urease, amylase, and cellulase was inhibited by nitrogen deposition. ④ With the deepening of the boundary soil layer (from 0-20 cm to 20-40 cm), urease and pucosidase made different responses to the different levels of nitrogen deposition, while invertase, catakse, amylase, cellulose, and polyphenol oxidase showed the same response to nitrogen deposition. 展开更多
关键词 Nitrogen deposition Iinzhi boundary soil soil enzyme activity Forest-grassland
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部