期刊文献+
共找到149篇文章
< 1 2 8 >
每页显示 20 50 100
THE STABILITY OF BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION AROUND THE HYDROSTATIC BALANCE
1
作者 Saiguo XU Zhong TAN 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1466-1486,共21页
This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Bouss... This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3). 展开更多
关键词 boussinesq equations partial dissipation stability DECAY
下载PDF
Wave interaction for a generalized higher-dimensional Boussinesq equation describing the nonlinear Rossby waves
2
作者 Rong SU Penghao JI Xiaojun YIN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第5期1415-1424,共10页
Based on an algebraically Rossby solitary waves evolution model,namely an extended(2+1)-dimensional Boussinesq equation,we firstly introduced a special transformation and utilized the Hirota method,which enable us to ... Based on an algebraically Rossby solitary waves evolution model,namely an extended(2+1)-dimensional Boussinesq equation,we firstly introduced a special transformation and utilized the Hirota method,which enable us to obtain multi-complexiton solutions and explore the interaction among the solutions.These wave functions are then employed to infer the influence of background flow on the propagation of Rossby waves,as well as the characteristics of propagation in multi-wave running processes.Additionally,we generated stereogram drawings and projection figures to visually represent these solutions.The dynamical behavior of these solutions is thoroughly examined through analytical and graphical analyses.Furthermore,we investigated the influence of the generalized beta effect and the Coriolis parameter on the evolution of Rossby waves. 展开更多
关键词 Rossby wave boussinesq equation Complexiton solution Breather solution
下载PDF
ON THE CAUCHY PROBLEM FOR THE GENERALIZED BOUSSINESQ EQUATION WITH A DAMPED TERM
3
作者 Xiao SU Shubin WANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1766-1786,共21页
This paper is devoted to the Cauchy problem for the generalized damped Boussinesq equation with a nonlinear source term in the natural energy space.With the help of linear time-space estimates,we establish the local e... This paper is devoted to the Cauchy problem for the generalized damped Boussinesq equation with a nonlinear source term in the natural energy space.With the help of linear time-space estimates,we establish the local existence and uniqueness of solutions by means of the contraction mapping principle.The global existence and blow-up of the solutions at both subcritical and critical initial energy levels are obtained.Moreover,we construct the sufficient conditions of finite time blow-up of the solutions with arbitrary positive initial energy. 展开更多
关键词 damped boussinesq equation Cauchy problem global solutions BLOW-UP
下载PDF
Bifurcations, Analytical and Non-Analytical Traveling Wave Solutions of (2 + 1)-Dimensional Nonlinear Dispersive Boussinesq Equation
4
作者 Dahe Feng Jibin Li Airen Zhou 《Applied Mathematics》 2024年第8期543-567,共25页
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ... For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation. 展开更多
关键词 (2 + 1)-Dimensional Nonlinear Dispersive boussinesq equation BIFURCATIONS Phase Portrait Analytical Periodic Wave Solution Periodic Cusp Wave Solution
下载PDF
Dynamics and Exact Solutions of (1 + 1)-Dimensional Generalized Boussinesq Equation with Time-Space Dispersion Term
5
作者 Dahe Feng Jibin Li Jianjun Jiao 《Journal of Applied Mathematics and Physics》 2024年第8期2723-2737,共15页
We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of ... We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation. 展开更多
关键词 Generalized boussinesq equation Improved Sub-equation Method BIFURCATION Soliton Solution Periodic Solution
下载PDF
Diversity of Rogue Wave Solutions to the (1+1)-Dimensional Boussinesq Equation
6
作者 Xiaoming Wang Jingjie Huang 《Journal of Applied Mathematics and Physics》 2024年第2期458-467,共10页
A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics ... A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics reasons for different spatiotemporal structures of rogue waves are analyzed using the extreme value theory of the two-variables function. The diversity of spatiotemporal structures not only depends on the disturbance parameter u0 </sub>but also has a relationship with the other parameters c<sub>0</sub>, α, β. 展开更多
关键词 boussinesq equation Rogue wave Periodically Homoclinic Solution Spatiotemporal Structure
下载PDF
THE REGULARITY CRITERIA OF WEAK SOLUTIONS TO 3D AXISYMMETRIC INCOMPRESSIBLE BOUSSINESQ EQUATIONS 被引量:1
7
作者 董玉 黄耀芳 +1 位作者 李莉 卢青 《Acta Mathematica Scientia》 SCIE CSCD 2023年第6期2387-2397,共11页
In this paper,we obtain new regularity criteria for the weak solutions to the three dimensional axisymmetric incompressible Boussinesq equations.To be more precise,under some conditions on the swirling component of vo... In this paper,we obtain new regularity criteria for the weak solutions to the three dimensional axisymmetric incompressible Boussinesq equations.To be more precise,under some conditions on the swirling component of vorticity,we can conclude that the weak solutions are regular. 展开更多
关键词 boussinesq equations regularity criteria AXISYMMETRY
下载PDF
Influence of dissipation on solitary wave solution to generalized Boussinesq equation
8
作者 Weiguo ZHANG Siyu HONG +1 位作者 Xingqian LING Wenxia LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第3期477-498,共22页
This paper uses the theory of planar dynamic systems and the knowledge of reaction-diffusion equations,and then studies the bounded traveling wave solution of the generalized Boussinesq equation affected by dissipatio... This paper uses the theory of planar dynamic systems and the knowledge of reaction-diffusion equations,and then studies the bounded traveling wave solution of the generalized Boussinesq equation affected by dissipation and the influence of dissipation on solitary waves.The dynamic system corresponding to the traveling wave solution of the equation is qualitatively analyzed in detail.The influence of the dissipation coefficient on the solution behavior of the bounded traveling wave is studied,and the critical values that can describe the magnitude of the dissipation effect are,respectively,found for the two cases of b_3<0 and b_3>0 in the equation.The results show that,when the dissipation effect is significant(i.e.,r is greater than the critical value in a certain situation),the traveling wave solution to the generalized Boussinesq equation appears as a kink-shaped solitary wave solution;when the dissipation effect is small(i.e.,r is smaller than the critical value in a certain situation),the traveling wave solution to the equation appears as the oscillation attenuation solution.By using the hypothesis undetermined method,all possible solitary wave solutions to the equation when there is no dissipation effect(i.e.,r=0)and the partial kink-shaped solitary wave solution when the dissipation effect is significant are obtained;in particular,when the dissipation effect is small,an approximate solution of the oscillation attenuation solution can be achieved.This paper is further based on the idea of the homogenization principles.By establishing an integral equation reflecting the relationship between the approximate solution of the oscillation attenuation solution and the exact solution obtained in the paper,and by investigating the asymptotic behavior of the solution at infinity,the error estimate between the approximate solution of the oscillation attenuation solution and the exact solution is obtained,which is an infinitesimal amount that decays exponentially.The influence of the dissipation coefficient on the amplitude,frequency,period,and energy of the bounded traveling wave solution of the equation is also discussed. 展开更多
关键词 generalized boussinesq equation influence of dissipation qualitative analysis solitary wave solution oscillation attenuation solution error estimation
下载PDF
THE ZERO LIMIT OF THERMAL DIFFUSIVITY FOR THE 2D DENSITY-DEPENDENT BOUSSINESQ EQUATIONS
9
作者 叶霞 徐艳霞 王泽佳 《Acta Mathematica Scientia》 SCIE CSCD 2023年第4期1800-1818,共19页
This paper is concerned with the asymptotic behavior of solutions to the initial boundary problem of the two-dimensional density-dependent Boussinesq equations.It is shown that the solutions of the Boussinesq equation... This paper is concerned with the asymptotic behavior of solutions to the initial boundary problem of the two-dimensional density-dependent Boussinesq equations.It is shown that the solutions of the Boussinesq equations converge to those of zero thermal diffusivity Boussinesq equations as the thermal diffusivity tends to zero,and the convergence rate is established.In addition,we prove that the boundary-layer thickness is of the valueδ(k)=k^(α)with anyα∈(0,1/4)for a small diffusivity coefficient k>0,and we also find a function to describe the properties of the boundary layer. 展开更多
关键词 density-dependent boussinesq equation zero thermal diffusivity convergence rate boundary layer
下载PDF
Adomian Decomposition Method for Solving Boussinesq Equations Using Maple
10
作者 Ameera Aljuhani Dalal Maturi Hashim Alshehri 《Applied Mathematics》 2023年第2期121-129,共9页
This paper uses the Adomian Decomposition Method (ADM) to solve Boussinesq equations using Maple. The Boussinesq approximation for water waves is a weakly nonlinear and long-wave approximation in fluid dynamics. The a... This paper uses the Adomian Decomposition Method (ADM) to solve Boussinesq equations using Maple. The Boussinesq approximation for water waves is a weakly nonlinear and long-wave approximation in fluid dynamics. The approximation is named after Joseph Boussinesq, who developed it in response to John Scott Russell’s observation of a wave of translation (also known as solitary wave or soliton). Bossinesq’s article from 1872 introduced the equations that are now known as the Boussinesq equations. Numerical methods are commonly utilized to solve nonlinear equation systems. In this paper, we investigate a nonlinear singly perturbed advection-diffusion problem. Using the usual Adomian Decomposition Method, we formulate an approximate linear advection-diffusion problem and investigate several practical numerical approaches for solving it (ADM). The Adomian Decomposition Method (ADM) is a powerful tool for numerical simulations and approximation analytic solutions. The Adomian Decomposition Method (ADM) is used to solve nonlinear advection differential equations using Maple by illustrating numerous examples. The findings are presented in the form of tables and graphs for several examples. For various examples, the findings are presented in the form of tables and graphs. The difference between the precise and numerical solutions indicates the Maple program solution’s efficacy, as well as the ease and speed with which it was acquired. 展开更多
关键词 Adomian Decomposition Method boussinesq equations Maple 18
下载PDF
BACKLUND TRANSFORMATION AND SIMILARITY REDUCTIONS OF BOUSSINESQ EQUATION 被引量:1
11
作者 张玉峰 张鸿庆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期199-202,共4页
The homogeneous balance method, which is simple and straightforward, is extended to seek for Backlund transformation, exact bell shape soliton solutions and similarity reduction of the Boussinesq equation. The method... The homogeneous balance method, which is simple and straightforward, is extended to seek for Backlund transformation, exact bell shape soliton solutions and similarity reduction of the Boussinesq equation. The method can be used in general. 展开更多
关键词 Backlund transformation boussinesq equation similarity reduction
下载PDF
A novel (G'/G)-expansion method and its application to the Boussinesq equation 被引量:14
12
作者 Md.Nur Alam Md.Ali Akbar Syed Tauseef Mohyud-Din 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期34-43,共10页
In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the B... In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves. 展开更多
关键词 (G'/G)-expansion method boussinesq equation solitary wave solutions auxiliary nonlinear ordinary differential equation
下载PDF
Some new exact solutions of Jacobian elliptic function about the generalized Boussinesq equation and Boussinesq-Burgers equation 被引量:9
13
作者 张亮 张立凤 李崇银 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第2期403-410,共8页
By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic functio... By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions. 展开更多
关键词 generalized boussinesq equation boussinesq-Burgers equation Jacobian elliptic function modified mapping method
下载PDF
Extended Fan's Algebraic Method and Its Application to KdV and Variant Boussinesq Equations 被引量:7
14
作者 YANG Xian-Lin TANG Jia-Shi College of Mechanics and Aerospace,Hunan University,Changsha 410082,China2 Department of Computer Science,Hunan Radio and Television University,Changsha 410004,China 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第7期1-6,共6页
An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential e... An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions. 展开更多
关键词 algebraic method KdV equation variant boussinesq equations polynomial complete discrimination system
下载PDF
Numerical Models of Higher-Order Boussinesq Equations and Comparisons with Laboratory Measurement 被引量:5
15
作者 邹志利 张晓莉 《China Ocean Engineering》 SCIE EI 2001年第2期229-240,共12页
Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq eq... Nonlinear water wave propagation passing a submerged shelf is studied experimentally and numerically. The applicability of two different wave propagation models has been investigated. One is higher-order Boussinesq equations derived by Zou (1999) and the other is the classic Boussinesq equations, Physical experiments are conducted, three different front slopes (1:10, 1:5 and 1:2) of the shelf are set up in the experiment and their effects on wave propagation are investigated. Comparisons of numerical results with test data are made, the model of higher-order Boussinesq equations agrees much better with the measurements than the model of the classical Boussinesq equations, The results show that the higher-order Boussinesq equations can also be applied to the steeper slope case although the mild slope assumption is employed in the derivation of the higher order terms of higher order Boussinesq equations. 展开更多
关键词 numerical model water wares boussinesq equations NONLINEAR DISPERSION
下载PDF
A NOTE ON GLOBAL WELL-POSEDNESS OF SOLUTIONS TO BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION 被引量:7
16
作者 叶专 《Acta Mathematica Scientia》 SCIE CSCD 2015年第1期112-120,共9页
The goal of this paper is to consider the global well-posedness to n-dimensional (n 〉 3) Boussinesq equations with fractional dissipation. More precisely, it is proved that there exists a unique global regular solu... The goal of this paper is to consider the global well-posedness to n-dimensional (n 〉 3) Boussinesq equations with fractional dissipation. More precisely, it is proved that there exists a unique global regular solution to the Boussinesq equations provided the real parameter α satisfies α≥1/2 +n/4. 展开更多
关键词 boussinesq equations fractional Laplacian global regularity
下载PDF
Conditional Similarity Solutions of the Boussinesq Equation 被引量:6
17
作者 TANGXiao-Yan LINJi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2001年第4期399-404,共6页
The direct method proposed by Clarkson and Kruskal is modified to obtain some conditional similarity solutions of a nonlinear physics model. Taking the -dimensional Boussinesq equation as a simple example, six types o... The direct method proposed by Clarkson and Kruskal is modified to obtain some conditional similarity solutions of a nonlinear physics model. Taking the -dimensional Boussinesq equation as a simple example, six types of conditional similarity reductions are obtained. 展开更多
关键词 conditional similarity reduction direct method boussinesq equation
下载PDF
Rational and Periodic Wave Solutions of Two-Dimensional Boussinesq Equation 被引量:3
18
作者 ZHANG yi YE Ling-Ya 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第4期815-824,共10页
Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutio... Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions. 展开更多
关键词 SOLITON Hirota bilinear method Riemann theta function periodic wave solutions rational solutions two-dimensional boussinesq equation
下载PDF
Applications of F-expansion to Periodic Wave Solutions for Variant Boussinesq Equations 被引量:3
19
作者 WANG Yue-Ming LI Xiang-Zheng +1 位作者 YANG Sen WANG Ming-Liang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第3X期396-400,共5页
We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion ... We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the variant Boussinesq equations. When the modulus m approaches 1 and O, the hyperbolic function solutions (including the solitary wave solutions) and trigonometric solutions are also given respectively. 展开更多
关键词 F-expansion variant boussinesq equations periodic wave solutions Jacobi elliptic functions solitary wave solutions
下载PDF
Global existence and decay of solutions for the generalized bad Boussinesq equation 被引量:3
20
作者 Hatice Taskesen Necat Polat Abdulkadir Ertas 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第3期253-268,共16页
In this paper, we consider the global existence of solutions for the Cauchy problem of the generalized sixth order bad Boussinesq equation. Moreover, we show that the supremum norm of the solution decays algebraically... In this paper, we consider the global existence of solutions for the Cauchy problem of the generalized sixth order bad Boussinesq equation. Moreover, we show that the supremum norm of the solution decays algebraically to zero as (1 + t)-(1/7) when t approaches to infinity, provided the initial data are sufficiently small and regular. 展开更多
关键词 bad boussinesq equation global existence asymptotic behavior oscillatory integral.
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部