In this paper we investigate the existence and stability of periodic solutions(on a half-line R_(+))and almost periodic solutions on the whole line time-axis R to the Boussinesq system on several classes of unbounded ...In this paper we investigate the existence and stability of periodic solutions(on a half-line R_(+))and almost periodic solutions on the whole line time-axis R to the Boussinesq system on several classes of unbounded domains of R^(n) in the framework of interpolation spaces.For the linear Boussinesq system we combine the L^(p)—L^(q)-smoothing estimates and interpolation functors to prove the existence of bounded mild solutions.Then,we prove the existence of periodic solutions by invoking Massera’s principle.We also prove the existence of almost periodic solutions.Then we use the results of the linear Boussinesq system to establish the existence,uniqueness and stability of the small periodic and almost periodic solutions to the Boussinesq system using fixed point arguments and interpolation spaces.Our results cover and extend the previous ones obtained in[13,34,38].展开更多
Assuming that the external forces of the system are small enough, the reference temperature being a periodic function, we study the existence, the uniqueness and the regularity of time-periodic solutions for the Bouss...Assuming that the external forces of the system are small enough, the reference temperature being a periodic function, we study the existence, the uniqueness and the regularity of time-periodic solutions for the Boussinesq equations in several classes of unbounded domains of Rn. Our analysis is based on the framework of weak-Lp spaces.展开更多
基金financially supported by the Vietnam National Foundation for Science and Technology Development under grant number 101.02-2021.04financially supported by Vietnam Ministry of Education and Training under Project B2022-BKA-06.
文摘In this paper we investigate the existence and stability of periodic solutions(on a half-line R_(+))and almost periodic solutions on the whole line time-axis R to the Boussinesq system on several classes of unbounded domains of R^(n) in the framework of interpolation spaces.For the linear Boussinesq system we combine the L^(p)—L^(q)-smoothing estimates and interpolation functors to prove the existence of bounded mild solutions.Then,we prove the existence of periodic solutions by invoking Massera’s principle.We also prove the existence of almost periodic solutions.Then we use the results of the linear Boussinesq system to establish the existence,uniqueness and stability of the small periodic and almost periodic solutions to the Boussinesq system using fixed point arguments and interpolation spaces.Our results cover and extend the previous ones obtained in[13,34,38].
基金supported by M.E.C. (Spain), Project MTM 2006-07932supported by Junta de Andalucía, Project P06- FQM- 02373supported by Fondecyt-Chile (Grant No. 1080628)
文摘Assuming that the external forces of the system are small enough, the reference temperature being a periodic function, we study the existence, the uniqueness and the regularity of time-periodic solutions for the Boussinesq equations in several classes of unbounded domains of Rn. Our analysis is based on the framework of weak-Lp spaces.