Bovine Herpesvirus-1 (BoHV-1) is a DNA virus belonging to the family Herpesviridae, subfamily Alfaherpesvirinae; it is a worldwide pathogen, causing serious economic losses in livestock. In Colombia there have been ...Bovine Herpesvirus-1 (BoHV-1) is a DNA virus belonging to the family Herpesviridae, subfamily Alfaherpesvirinae; it is a worldwide pathogen, causing serious economic losses in livestock. In Colombia there have been multiple isolates of BoHV-1 that have been subjected to molecular characterization, classifying most of the country isolates as BoHV-I.1. In the present study we developed and evaluated an ethyleneimine binary inactivated isolate from the native BoHV-1 strain (C6rdoba-2) in a rabbit model of vaccination and infection. The vaccine was evaluated in two phases, one of immunogenicity with vaccination and a booster after 21 days, and an evaluation phase of protection against challenge with a highly virulent reference strain. The results demonstrate optimum serum-conversion, with protective neutralizing antibody titers 28 days post vaccination and optimal protection against challenge with the reference strain with decreased clinical signs of infection, protection against the onset of fever and decrease of virus excretion post challenge. In conclusion, our results show the enormous potential that an immunogenic inactivated vaccine has produced from the native BoHV-I.1 strain, which produces a high antigen mass to the vaccine to induce optimal immunity and protection, and it is a strong candidate for evaluation and possible future use in different cattle populations.展开更多
By means of PCR,the gene encoding gD of bovine herpesvirus-1 (BHV-1) strain Luojing was amplified,cloned and sequenced.The nucleotide sequence of this gD gene was (1 251 bp,)encoding 417 amino acids.Comparied with the...By means of PCR,the gene encoding gD of bovine herpesvirus-1 (BHV-1) strain Luojing was amplified,cloned and sequenced.The nucleotide sequence of this gD gene was (1 251 bp,)encoding 417 amino acids.Comparied with the published P8-2 strain,the homology of the necleotide sequence is 99.92%,and that of the deduced amino acid sequence is 100%.The results indicated that gD of BHV-1 was highly conservative.展开更多
Many viral diseases are endemic in cattle populations worldwide. The ability of many viruses to cross the placenta and cause abortions and fetal malformations is well understood. There is also significant evidence tha...Many viral diseases are endemic in cattle populations worldwide. The ability of many viruses to cross the placenta and cause abortions and fetal malformations is well understood. There is also significant evidence that viral infections have additional actions in dairy cows, which are reflected in reduced conception rates. These effects are, however, highly dependent on the time at which an individual animal first contracts the disease and are less easy to quantify. This paper reviews the evidence relating to five viruses that can affect fertility, together with their potential mechanisms of action. Acute infection with non-cytopathic bovine viral diarrhea virus (BVDV) in mid-gestation increases abortion rates or causes the birth of persistently infected calves. BVDV infections closer to the time of breeding can have direct effects on the ovaries and uterine endometrium, which cause estrous cycle irregularities and early embryo mortality. Fertility may also be reduced by BVDV-induced immunosuppression, which increases the susceptibility to bacterial infections. Bovine herpesvirus (BHV)-1 is most common in pre-pubertal heifers, and can slow their growth, delay breeding, and increase the age at first calving. Previously infected animals subsequently show reduced fertility. Although this may be associated with lung damage, ovarian lesions have also been reported. Both BHV-1 and BHV-4 remain latent in the host following initial infection and may be reactivated later by stress, for example associated with calving and early lactation. While BHV-4 infection alone may not reduce fertility, it appears to act as a co-factor with established bacterial pathogens such as Escherichia coli and Trueperella pyogenes to promote the development of endometritis and delay uterine repair mechanisms after calving. Both Schmallenberg virus (SBV) and bluetongue virus (BTV) are transmitted by insect vectors and lead to increased abortion rates and congenital malformations.BTV-8 also impairs the development of hatched blastocysts;furthermore, infection around the time of breeding with either virus appears to reduce conception rates. Although the reductions in conception rates are often difficult to quantify, they are nevertheless sufficient to cause economic losses, which help to justify the benefits of vaccination and eradication schemes.展开更多
基金supported by the División de Investigación Universidad Nacional de Colombia, grants No.20201007738 and 202010013254
文摘Bovine Herpesvirus-1 (BoHV-1) is a DNA virus belonging to the family Herpesviridae, subfamily Alfaherpesvirinae; it is a worldwide pathogen, causing serious economic losses in livestock. In Colombia there have been multiple isolates of BoHV-1 that have been subjected to molecular characterization, classifying most of the country isolates as BoHV-I.1. In the present study we developed and evaluated an ethyleneimine binary inactivated isolate from the native BoHV-1 strain (C6rdoba-2) in a rabbit model of vaccination and infection. The vaccine was evaluated in two phases, one of immunogenicity with vaccination and a booster after 21 days, and an evaluation phase of protection against challenge with a highly virulent reference strain. The results demonstrate optimum serum-conversion, with protective neutralizing antibody titers 28 days post vaccination and optimal protection against challenge with the reference strain with decreased clinical signs of infection, protection against the onset of fever and decrease of virus excretion post challenge. In conclusion, our results show the enormous potential that an immunogenic inactivated vaccine has produced from the native BoHV-I.1 strain, which produces a high antigen mass to the vaccine to induce optimal immunity and protection, and it is a strong candidate for evaluation and possible future use in different cattle populations.
文摘By means of PCR,the gene encoding gD of bovine herpesvirus-1 (BHV-1) strain Luojing was amplified,cloned and sequenced.The nucleotide sequence of this gD gene was (1 251 bp,)encoding 417 amino acids.Comparied with the published P8-2 strain,the homology of the necleotide sequence is 99.92%,and that of the deduced amino acid sequence is 100%.The results indicated that gD of BHV-1 was highly conservative.
文摘Many viral diseases are endemic in cattle populations worldwide. The ability of many viruses to cross the placenta and cause abortions and fetal malformations is well understood. There is also significant evidence that viral infections have additional actions in dairy cows, which are reflected in reduced conception rates. These effects are, however, highly dependent on the time at which an individual animal first contracts the disease and are less easy to quantify. This paper reviews the evidence relating to five viruses that can affect fertility, together with their potential mechanisms of action. Acute infection with non-cytopathic bovine viral diarrhea virus (BVDV) in mid-gestation increases abortion rates or causes the birth of persistently infected calves. BVDV infections closer to the time of breeding can have direct effects on the ovaries and uterine endometrium, which cause estrous cycle irregularities and early embryo mortality. Fertility may also be reduced by BVDV-induced immunosuppression, which increases the susceptibility to bacterial infections. Bovine herpesvirus (BHV)-1 is most common in pre-pubertal heifers, and can slow their growth, delay breeding, and increase the age at first calving. Previously infected animals subsequently show reduced fertility. Although this may be associated with lung damage, ovarian lesions have also been reported. Both BHV-1 and BHV-4 remain latent in the host following initial infection and may be reactivated later by stress, for example associated with calving and early lactation. While BHV-4 infection alone may not reduce fertility, it appears to act as a co-factor with established bacterial pathogens such as Escherichia coli and Trueperella pyogenes to promote the development of endometritis and delay uterine repair mechanisms after calving. Both Schmallenberg virus (SBV) and bluetongue virus (BTV) are transmitted by insect vectors and lead to increased abortion rates and congenital malformations.BTV-8 also impairs the development of hatched blastocysts;furthermore, infection around the time of breeding with either virus appears to reduce conception rates. Although the reductions in conception rates are often difficult to quantify, they are nevertheless sufficient to cause economic losses, which help to justify the benefits of vaccination and eradication schemes.