This paper presents the design of a compact bow-tie antenna with triple band notched characteristics for UWB applications. The proposed antenna can operate from 3.1 to 10.6 GHz with VSWR -...This paper presents the design of a compact bow-tie antenna with triple band notched characteristics for UWB applications. The proposed antenna can operate from 3.1 to 10.6 GHz with VSWR - 8.4 GHz) centered at 8.1 GHz, the CSRR2 rejects the WLAN band (5.15 - 5.85 GHz) centered at 5.6 GHz, and the CSRR3 rejects the band (4.10 - 4.47 GHz) centered at 4.32 GHz. Compared with recent design, this antenna is more compact, and presents better simulation results of its characteristics. Our newly designed antenna is a potential candidate for application in UWB communication systems.展开更多
In this paper two proposed methods of input impedance calculation for Bow-Tie antenna are introduced. The proposed methods show input impedance calculation with high accuracy. Also, design curves for input impedance v...In this paper two proposed methods of input impedance calculation for Bow-Tie antenna are introduced. The proposed methods show input impedance calculation with high accuracy. Also, design curves for input impedance values were developed depending on the geometry of antenna. The proposed design curves are used to design a Bow-Tie type RFID tag antenna. The input impedance of the tag antenna is calculated using proposed methods and compared with that obtained using CST studio suite 2014 and IE3D Zeland version 12.0 software packages. The results are investigated and discussed. The tag antenna is fabricated, measured and the obtained input impedance is compared with the simulation and the proposed methods. Good agreement among measured input impedance and that simulated by CST, IE3D or proposed methods is obtained.展开更多
文摘This paper presents the design of a compact bow-tie antenna with triple band notched characteristics for UWB applications. The proposed antenna can operate from 3.1 to 10.6 GHz with VSWR - 8.4 GHz) centered at 8.1 GHz, the CSRR2 rejects the WLAN band (5.15 - 5.85 GHz) centered at 5.6 GHz, and the CSRR3 rejects the band (4.10 - 4.47 GHz) centered at 4.32 GHz. Compared with recent design, this antenna is more compact, and presents better simulation results of its characteristics. Our newly designed antenna is a potential candidate for application in UWB communication systems.
文摘In this paper two proposed methods of input impedance calculation for Bow-Tie antenna are introduced. The proposed methods show input impedance calculation with high accuracy. Also, design curves for input impedance values were developed depending on the geometry of antenna. The proposed design curves are used to design a Bow-Tie type RFID tag antenna. The input impedance of the tag antenna is calculated using proposed methods and compared with that obtained using CST studio suite 2014 and IE3D Zeland version 12.0 software packages. The results are investigated and discussed. The tag antenna is fabricated, measured and the obtained input impedance is compared with the simulation and the proposed methods. Good agreement among measured input impedance and that simulated by CST, IE3D or proposed methods is obtained.