A novel structure is proposed for doubling the vertical breakdown voltage of silicon-on-insulator(SOI) devices. In this new structure, the conventional buried oxide(BOX) in an SOI device is split into two sections...A novel structure is proposed for doubling the vertical breakdown voltage of silicon-on-insulator(SOI) devices. In this new structure, the conventional buried oxide(BOX) in an SOI device is split into two sections: the source-section BOX and the drain-section BOX. A highly-doped Si layer, referred to as a non-depletion potential-clamped layer(NPCL), is positioned under and close to the two BOX sections. In the split BOXes and the Si region above the BOXes, the blocking voltage(BV) is divided into two parts by the NPCL. The voltage in the NPCL is clamped to be nearly half of the drain voltage. When the drain voltage approaches a breakdown value, the voltage sustained by the source-section BOX and the Si region under the source are nearly the same as the voltage sustained by the drain-section BOX and the Si region under the drain. The vertical BV is therefore almost doubled. The effectiveness of this new structure was verified for a P-channel SOI lateral double-diffused metal-oxide semiconductor(LDMOS) and can be applied to other high-voltage SOI devices. The simulation results show that the BV in an NPCL P-channel SOI LDMOS is improved by 55% and the specific on-resistance(Ron,sp) is reduced by 69% in comparison to the conventional structure.展开更多
Field observations illustrated that, right-turn vehicles stopped at various positions when proceeding within the right-turn lanes, while some of them trespassed on the crosswalks with multiple stops. In this case, ped...Field observations illustrated that, right-turn vehicles stopped at various positions when proceeding within the right-turn lanes, while some of them trespassed on the crosswalks with multiple stops. In this case, pedestrians and bikes (ped/bike) are encountered unsmooth and hazardous crossings when right-turn vehicles encroaching their lanes. Meanwhile, this also causes conflicts between right-turn and through vehicles at the crossing street. To better protect ped/bike at crossings with right-turn vehicles, this paper proposes a concept of “right-turn vehicle box” (RTVB) as a supplemental treatment within right-turn lanes. Sight distance, geometric conditions, and behaviors of vehicles and ped/bike are key factors to consider so as to set up the criteria and to design the suitable treatment. A case study was conducted at an intersection pair in Houston, USA to shape the idea of RTVB, together with driving simulator tests under relevant scenarios. The preliminary crosscheck examination shows that the right-turn vehicle box could possibly provide ped/ bike with smoother and safer crossings. In the interim, the safety and efficiency of right-turn operations were also improved. To further validate the effects, implementation studies should be conducted before the RTVB can make its debut in practice. Future works will focus on the complete warrants and design details of this treatment. Moreover, the concept of “vehicle box” could also be transplanted to other places where turning movement(s) needs assistance or improvements.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61404110)the National Higher-Education Institution General Research and Development Project,China(Grant No.2682014CX097)
文摘A novel structure is proposed for doubling the vertical breakdown voltage of silicon-on-insulator(SOI) devices. In this new structure, the conventional buried oxide(BOX) in an SOI device is split into two sections: the source-section BOX and the drain-section BOX. A highly-doped Si layer, referred to as a non-depletion potential-clamped layer(NPCL), is positioned under and close to the two BOX sections. In the split BOXes and the Si region above the BOXes, the blocking voltage(BV) is divided into two parts by the NPCL. The voltage in the NPCL is clamped to be nearly half of the drain voltage. When the drain voltage approaches a breakdown value, the voltage sustained by the source-section BOX and the Si region under the source are nearly the same as the voltage sustained by the drain-section BOX and the Si region under the drain. The vertical BV is therefore almost doubled. The effectiveness of this new structure was verified for a P-channel SOI lateral double-diffused metal-oxide semiconductor(LDMOS) and can be applied to other high-voltage SOI devices. The simulation results show that the BV in an NPCL P-channel SOI LDMOS is improved by 55% and the specific on-resistance(Ron,sp) is reduced by 69% in comparison to the conventional structure.
文摘Field observations illustrated that, right-turn vehicles stopped at various positions when proceeding within the right-turn lanes, while some of them trespassed on the crosswalks with multiple stops. In this case, pedestrians and bikes (ped/bike) are encountered unsmooth and hazardous crossings when right-turn vehicles encroaching their lanes. Meanwhile, this also causes conflicts between right-turn and through vehicles at the crossing street. To better protect ped/bike at crossings with right-turn vehicles, this paper proposes a concept of “right-turn vehicle box” (RTVB) as a supplemental treatment within right-turn lanes. Sight distance, geometric conditions, and behaviors of vehicles and ped/bike are key factors to consider so as to set up the criteria and to design the suitable treatment. A case study was conducted at an intersection pair in Houston, USA to shape the idea of RTVB, together with driving simulator tests under relevant scenarios. The preliminary crosscheck examination shows that the right-turn vehicle box could possibly provide ped/ bike with smoother and safer crossings. In the interim, the safety and efficiency of right-turn operations were also improved. To further validate the effects, implementation studies should be conducted before the RTVB can make its debut in practice. Future works will focus on the complete warrants and design details of this treatment. Moreover, the concept of “vehicle box” could also be transplanted to other places where turning movement(s) needs assistance or improvements.