The aim of this paper is to investigate and optimize the preparation of scutellarin(SCU)-loaded HP-β-CD/chitosan(CS) nanoparticles(CD/CS-SCU-NPs). CD/CS-SCU-NPs were prepared by ionic cross-linking method and the pro...The aim of this paper is to investigate and optimize the preparation of scutellarin(SCU)-loaded HP-β-CD/chitosan(CS) nanoparticles(CD/CS-SCU-NPs). CD/CS-SCU-NPs were prepared by ionic cross-linking method and the process and formulation variables were optimized using response surface methodology(RSM) with a three-level, three factor Box–Behnken design(BBD).The independent variables were the added amounts of CS, sodium tripolyphosphate(TPP)and Pluronic F-68 during the preparation. Dependent variables(responses) were particle size and entrapment efficiency. Mathematical equations and respond surface plots were used to correlate independent and dependent variables.The preparation process and formulation variables were optimized to achieve minimum particle size and maximum entrapment efficiency by calculating the overall desirability value(OD). The optimized NP formulation was characterized for particle size, PDI, zeta potential, entrapment efficiency and in vitro drug release.According to the results, an optimized CD/CS-SCU-NP formulation was prepared. Results for particle size, PDI, zeta potential and entrapment efficiency were found to be around 200 nm,0.5, 25 mV, and 70% respectively. For in vitro study, the release of SCU from the NPs exhibited a biphasic release and was in accordance with Higuchi equation. The optimized preparation was simple with the probability for industrialization. The combination use of RSM, BBD and overall desirability values could provide a promising application for incorporating CD into CS nanoparticles as drug delivery carrier and help develop lab-scale procedures.展开更多
This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
Objective:The Box-Behnken response surface method combined with fingerprints was used to optimize the extraction process of total anthraquinone from Cassia seeds.Methods:A three-factor,three-level response surface tes...Objective:The Box-Behnken response surface method combined with fingerprints was used to optimize the extraction process of total anthraquinone from Cassia seeds.Methods:A three-factor,three-level response surface test was conducted based on the single-factor test with comprehensive evaluation as the measurement index.The comprehensive evaluation indexes included the extraction rate of total anthraquinone of Cassia seeds or the equivalent amount of herbs per gram of total anthraquinone of Cassia seeds,the normalized value of peak areas of 5 index components such as aurantio obtusin in the fingerprint of each sample to 16 shared peaks and the similarity of fingerprints(the reference fingerprint was established by the extraction solvent for the determination of Cassia seeds content in the Chinese Pharmacopoeia 2020 edition)with the weights of 0.2,0.5 and 0.3,respectively.Results:The best extraction process was obtained:the liquid-to-material ratio was 20:1(mL·g-1),the extraction solvent was mixture of 60%ethanol-ethyl acetate(2:1),and the extraction time was 15.12 min.The results of five sets of validation experiments showed that the overall evaluation of total anthraquinone of cassia seeds by the best process was 0.528(RSD=0.45%),and the prediction result of response surface method model was 0.531,and the relative error with the prediction result was 0.531.The relative error of the predicted results was 0.56%,and the best extraction process was consistent with the model prediction,and the obtained best process could be used for the extraction of total anthraquinone from Cassia seeds.Conclusion:The Box-Behnken response surface method combined with the fingerprint technique can be used to find the best reaction conditions and examine the interactions among the factors in a comprehensive and accurate manner,which can provide reference for the optimization and evaluation of the extraction process of Chinese medicine.展开更多
A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to ...A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.展开更多
To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integr...To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.展开更多
[Objectives] To optimize the extraction process of total flavonoids in stems of Mallotus apelta. [Methods]On the basis of singlefactor test,with volume fraction of ethanol,extraction time and ratio of solvent as indep...[Objectives] To optimize the extraction process of total flavonoids in stems of Mallotus apelta. [Methods]On the basis of singlefactor test,with volume fraction of ethanol,extraction time and ratio of solvent as independent variables,the content of total flavonoids as dependent variables,the completely secondary response surface regression fitting was conducted on the independent and dependent variables,and the Response Surface Method was used to optimize the optimum extraction process of total flavonoids in Mallotus apelta stems and predict the optimum process. [Results] The optimum extraction process of total flavonoids in Mallotus apelta was determined as follows: ethanol concentration of 71. 5%; extraction time of 154. 6 min; solid-liquid ratio of 1∶19. 2; total flavonoids content of 7. 060 mg/g; fitted binomial squared correlation coefficient R^2= 0. 8751.[Conclusions]Composite Design/Response Surface Method could be used in the extraction process optimization of total flavonoids in Mallotus apelta stems,the mathematical model established had high prediction accuracy,the method was simple and operability was good.展开更多
Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and te...Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and temperature, a Taguchi experimental design was worked out. An L27 orthogonal array was chosen to take the above-mentioned parameters and relevant interactions into account. Response surface method was the tool used to analyze the experimental design results. Al/Ti, ethylene pressure and temperature were selected as experimental design factors, and catalyst activity and polymerization yield were the response parameters. Increasing pressure, due to an increment in monomer accessibility, and rising Al/Ti, because of higher reduction in the catalysts, cause an increase in both polymerization yield and catalyst activity. Nonetheless, a higher temperature, thanks to reducing ethylene solubility in the slurry medium and partially catalyst destruction, lead to a reduction in both response parameters. A synergistic effect was also observed between temperature and pressure. All catalyst activities will reduce in the presence of hydrogen. Molecular weight also shows a decline in the presence of hydrogen as a transfer agent. However, the polydispersity index remains approximately intact. Using SEM, various morphologies, owing to different catalyst morphologies, were seen for the polyethylene.展开更多
In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtur...In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.展开更多
Radar cross section (RCS) reduction technologies are very important in survivability of the military naval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scattered energ...Radar cross section (RCS) reduction technologies are very important in survivability of the military naval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scattered energy from one angular region of interest in space to another region of little interest. To decrease the scattering electromagnetic signals from ship scientifically, optimization methods should be introduced in shaping design. Based on the assumption of the characteristic section design method, mathematical formulations for optimal shaping design were established. Because of the computation-intensive analysis and singularity in shaping optimization, the response surface method (RSM) combined genetic algorithm (GA) was proposed. The poly-nomial response surface method was adopted in model approximation. Then genetic algorithms were employed to solve the surrogate optimization problem. By comparison RCS of the conventional and the optimal design, the superiority and effectiveness of proposed design methodology were verified.展开更多
Objective: To optimize the ionic liquid based microwave-assisted extraction (IL-MAE) of polyphenolic content from Peperomia pellucida (L) Kunth. Methods: The IL-MAE factors as experimental design parameters, including...Objective: To optimize the ionic liquid based microwave-assisted extraction (IL-MAE) of polyphenolic content from Peperomia pellucida (L) Kunth. Methods: The IL-MAE factors as experimental design parameters, including microwave power, extraction time, ionic liquid concentration, and liquid–solid ratio had been involved. Response surface methodology and Box–Behnken design were used to obtain predictive model (multivariate quadratic regression equation) and optimization of the extraction process. The response surface was analyzed by using the yields of total polyphenolic content as response value. Results: Based on the obtained results the optimum extraction condition, including microwave power of 30% Watts, extraction time of 18.5 min, the ionic liquid concen-tration of 0.79 mol/L, and the liquid–solid ratio of 10.72 mL/g 1-Buthyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4) as a solvent was selected. The regression model was obtained to predicts the yields from Peperomia pellucida:Y = 30.250 – 1.356X1 + 2.655X2 + 2.252X3 – 0.565X4 + 0.990 X1X3 – 8.172 X1X4 – 3.439 X3X4 – 4.178 X12 – 3.210 X32 – 6.786 X42 – 7.290 X12X3 + 5.575 X1X32 – 4.843 X32X4 with R2 = 0.82519. Scale-up confirmation test was obtained the maximum yields of total polyphenolics content with the amount of 31.1725μg GAE/g. Conclusions: The IL-MAE method produced a higher extraction polyphenolic and performed rapidly, easily and efficiently.展开更多
In this research, the degradation of dibenzothiophene(DBT) was investigated by using Pseudomonas sp. LKY-5 isolated from oil contaminated soil. The response surface methodology(RSM) based on the Box-Behnken design(BBD...In this research, the degradation of dibenzothiophene(DBT) was investigated by using Pseudomonas sp. LKY-5 isolated from oil contaminated soil. The response surface methodology(RSM) based on the Box-Behnken design(BBD) was applied for evaluating the interactive effects of four independent variables including substrate concentration, temperature, pH and agitation rate on the DBT removal response. A total of 29 experiments for four factors at three levels were conducted in present study. A second-order regression model was then developed, and the analysis of variance(ANOVA) illustrated that the proposed quadratic model could be utilized to navigate the design space. The value of determination coefficient(R2=0.953 4) indicated a satisfactory agreement between the quadratic model and the experimental data. It was found that DBT removal was more significantly affected(P<0.000 1) by substrate concentration compared with other three parameters. An 100% degradation of DBT could be obtained by Pseudomonas sp. LKY-5 at a substrate concentration of 100 mg/L.展开更多
The production of biodiesel through a transesterification method produces a large amount of wastewater that contains high levels of chemical oxygen demand (COD) and oil and grease (O&G). Currently, flotation is t...The production of biodiesel through a transesterification method produces a large amount of wastewater that contains high levels of chemical oxygen demand (COD) and oil and grease (O&G). Currently, flotation is the conventional primary treatment for O&G removal prior to biological treatments. In this study, electrocoagulation (EC) was adopted to treat the biodiesel wastewater. The effects of initial pH, applied voltage, and reaction time on the EC process for the removal of COD, O&G, and suspended solids (SS) were investigated using one factor at a time experiment. Furthermore, the Box-Behnken design, an experimental design for response surface methodology (RSM), was used to create a set of 15 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the pollutant removals. The experimental results show that EC could effectively reduce COD, O&G, and SS by 55.43%, 98.42%, and 96.59%, respectively, at the optimum conditions of pH 6.06, applied voltage 18.2 V, and reaction time 23.5 min. The experimental observations were in reasonable agreement with the modeled values.展开更多
In this paper, the estimation capacities of the response surface methodology (RSM) and artificial neural network (ANN), in a microwave-assisted extraction method to determine the amount of zinc in fish samples were in...In this paper, the estimation capacities of the response surface methodology (RSM) and artificial neural network (ANN), in a microwave-assisted extraction method to determine the amount of zinc in fish samples were investigated. The experiments were carried out based on a 3-level, 4-variable Box–Behnken design. The amount of zinc was considered as a function of four independent variables, namely irradiation power, irradiation time, nitric acid concentration, and temperature. The RSM results showed the quadratic polynomial model can be used to describe the relationship between the various factors and the response. Using the ANN analysis, the optimal configuration of the ANN model was found to be 4-10-1. After predicting the model using RSM and ANN, two methodologies were then compared for their predictive capabilities. The results showed that the ANN model is much more accurate in prediction as compared to the RSM.展开更多
[Objectives] To increase the survival rate of tissue culture seedlings of Dendrobium officinale,and optimize the conditions of rooting medium by the response surface methodology( RSM). [Methods]The effects of 6-BA con...[Objectives] To increase the survival rate of tissue culture seedlings of Dendrobium officinale,and optimize the conditions of rooting medium by the response surface methodology( RSM). [Methods]The effects of 6-BA concentration,NAA concentration,potato amount and the amount of mashed banana on the growth of seedlings were determined by single factor experiment and were analyzed by Box-Behnken design and response surface methodology. [Results]The optimal culture conditions: rooting medium 1/2 MS + 6-BA 0. 24 mg/L + mashed banana 87. 63 g/L + potato 89. 30 g/L + NAA 0. 52 mg/L + sucrose 20. 0 g/L + activated carbon 4. 0 g/L + agar 7. 0 g/L,p H 5. 8,and light intensity 2 000 Lx. [Conclusions]The model established by response surface methodology has a good predictability and could be used to optimize the conditions of tissue culture and rooting medium of D. officinale.展开更多
Wide range of rotating machinery contains an inherent amount of unbalance which leads to increase in the vibration level and related faults.In this work,the effect of different operating conditions viz.the unbalanced ...Wide range of rotating machinery contains an inherent amount of unbalance which leads to increase in the vibration level and related faults.In this work,the effect of different operating conditions viz.the unbalanced weight,radius,speed and position of the rotor disc on the unbalance in rotating machine are studied experimentally and analyzed by using Response Surface Methodology(RSM).RSM is a technique which consists of mathematical and statistical methods to develop the relationship between the inputs and outputs of a system by distinct functions.L27 Orthogonal Array(OA)was developed by using Design of Experiments(DOE)according to which experimentation has been carried out.Three accelerometer sensors were mounted to record the vibration responses(accelerations)in radially vertical,horizontal and axial directions.The responses recorded as root mean square values are then analysed using RSM.The relationship between response and operating factors has been established by developing a second order,non-linear mathematical model.Analysis of variance(ANOVA)has been performed for verification of the developed mathematical models.Results obtained from the analysis show that the unbalance weight and speed are most significant operating conditions that contribute the most to the effect the unbalance has on the rotating spindle.展开更多
[Objectives] To optimize the extraction process and determine the total triterpenoids from Semen Trichosanthis.[Methods]The Box-behnken response surface methodology was applied to optimize the extraction conditions of...[Objectives] To optimize the extraction process and determine the total triterpenoids from Semen Trichosanthis.[Methods]The Box-behnken response surface methodology was applied to optimize the extraction conditions of total triterpenoids in Semen Trichosanthis.And the spectrophotometry was used to determine the content of total triterpenoids in Semen Trichosanthis.[Results] The optimal extraction conditions were solid to liquid ratio of 40∶ 1,ultrasonic time of 20 min,and ultrasonic power of 100 W.Under these conditions,the content of total triterpenoids in Semen Trichosanthis was significantly different among the 10 production areas,among which the No.9 production area(Anhui 1) had the highest total triterpenoids content of 45.71 mg/g,while No.7 production area(Shandong) had the lowest total triterpenoids content of 15.22 mg/g.[Conclusions]The Box-behnken response surface methodology is reliable for the extraction of total triterpenoids in Semen Trichosanthis,and the spectrophotometry is proper for determining the content of total triterpenoids in Semen Trichosanthis.There are large differences in the content of total triterpenoids in Semen Trichosanthis produced in different areas.展开更多
In this work,response surface methodology(RSM)was employed to model and optimize electrodialysis process for mercury(Hg(II))removal from seaweed extracts.Box-Behnken design(BBD)was utilized to evaluate the effects and...In this work,response surface methodology(RSM)was employed to model and optimize electrodialysis process for mercury(Hg(II))removal from seaweed extracts.Box-Behnken design(BBD)was utilized to evaluate the effects and the interaction of influential variables such as operating voltage,influent flow rate,initial concentration of Hg(II)on the removal rate of Hg(II).The developed regression model for removal rate response was validated by analysis of variance,and presented a good agreement of the experimental data with the quadratic equation with high value coefficient of determination value(R2=0.9913,RAdj 2=0.9678).The optimum operating parameters were determined as 7.17V operating voltage,72.54L h−1 influent flow rate and 5.04mgL−1 initial concentration of mercury.Hg(II)removal rate of 76.45%was acquired under the optimum conditions,which showed good agreement with model-predicted(75.81%)result.The results revealed that electrodialysis can be considered as a promising strategy for removal of Hg(II)from seaweed extracts.展开更多
This study aimed to investigate optimal fermentation conditions of biological acetic acid fermentation for vinegar production. Optimization was performed on 3 acetic acid bacteria strains namely VMA1, VMA7 and VMAO us...This study aimed to investigate optimal fermentation conditions of biological acetic acid fermentation for vinegar production. Optimization was performed on 3 acetic acid bacteria strains namely VMA1, VMA7 and VMAO using Response Surface Methodology (RSM). A Box-Behnken-Design (BBD) was achieved with three different independent process parameters involving: fermentation temperature, original alcohol concentration and original acetic acid concentration and one dependent variable (acetic acid yield). The results showed that the mathematical models describe correctly the relationship between responses and factors (F values of the models (p R<sup>2</sup> (coefficient of correlation) respectively 0.96, 0.94, 0.98, and adjusted R<sup>2</sup> 0.95, 0.92, 0.98). The maximum acidity was obtained respectively at fermentation temperatures, original alcohol concentrations and original acetic acid concentrations ranging from [37.5°C - 45°C], [16% - 20% (v/v)], [1.5% - 2% (w/v)] for VMA1, [40°C - 45°C], [14.5% - 20% (v/v)], [1.7% - 2% (w/v)] for VMA7 and [42°C - 45°C], [17% - 20% (v/v)], [1.5% - 2% (w/v)] for VMAO. The use of these acetic strains in the production of vinegar may seriously lead to a decrease or even an ablation of the costs related to the cooling of bioreactors especially in warm and hot countries, in the context of global warming.展开更多
Gymnodimine (GYM), a fast-acting marine toxin, is destructive to aquaculture and human health through contaminated shellfish. The current detection methods in GYM have definite drawbacks in operation, such as the dema...Gymnodimine (GYM), a fast-acting marine toxin, is destructive to aquaculture and human health through contaminated shellfish. The current detection methods in GYM have definite drawbacks in operation, such as the demand for delicate instruments and the consumption of time. Therefore, silver colloid was utilized as a surface-enhanced Raman scattering (SERS) desirable substrate for sensitive and rapid detection of GYM in lake and shellfish samples. The theoretical spectrum of GYM is calculated by density functional theory (DFT), and the substrate performance is evaluated by a rhodamine 6 G probe. Under the optimal SERS experimental condition calculated by the response surface methodology, the low limit of detection of 0.105 μM with R<sup>2</sup> of 0.9873 and a broad linearity range of 0.1 - 10 μM was achieved for GYM detection. In addition, the substrate was satisfyingly applied to detect gymnodimine in the lake and shellfish matrix samples with LOD as low as 0.148 μM and 0.170 μM, respectively. These results demonstrated a promising SERS platform for detecting marine toxins in seafood for food safety and pharmaceutical research.展开更多
This paper examines the stability condition of a jointed rock slope in the south western region of Saudi Arabia using deterministic and probabilistic approaches,under both dry and wet conditions.The study area is char...This paper examines the stability condition of a jointed rock slope in the south western region of Saudi Arabia using deterministic and probabilistic approaches,under both dry and wet conditions.The study area is characterized by complex geology in rugged terrains.The stability analysis is carried out using the code FLAC3D to generate a 3-dimensional,ubiquitous joint model,to determine the influence of the dominant,unfavourable discontinuity orientation with respect to the slope face.The deterministic analysis is first implemented using the mean values of the selected random variables,namely the dip,dip direction and friction angle of the dominant discontinuity set,and the stability condition is assessed with a factor of safety based on the classical frictional joint constitutive model.A Box-Behnken design(BBD)approach is then adopted to create the surface response function as a second order polynomial for the factor of safety.To do so,fifteen FLAC3D models are generated in accordance with the BBD.Based on this,10,000 simulations of different slope realizations are carried out using Monte-Carlo simulation technique,and the probability of unsatisfactory of performance of the rock slope is assessed.It is shown that the probabilistic approach provides more insight and confidence in the stability condition of the rock slope,both under dry and steady state heavy rainfall conditions.A discussion is presented on the significance of accepting lower safety factors when heavy rainfall conditions are encountered.展开更多
基金supported by the Academic Research Fund,Faculty of Science,National University of Singapore,R148-000-180-112
文摘The aim of this paper is to investigate and optimize the preparation of scutellarin(SCU)-loaded HP-β-CD/chitosan(CS) nanoparticles(CD/CS-SCU-NPs). CD/CS-SCU-NPs were prepared by ionic cross-linking method and the process and formulation variables were optimized using response surface methodology(RSM) with a three-level, three factor Box–Behnken design(BBD).The independent variables were the added amounts of CS, sodium tripolyphosphate(TPP)and Pluronic F-68 during the preparation. Dependent variables(responses) were particle size and entrapment efficiency. Mathematical equations and respond surface plots were used to correlate independent and dependent variables.The preparation process and formulation variables were optimized to achieve minimum particle size and maximum entrapment efficiency by calculating the overall desirability value(OD). The optimized NP formulation was characterized for particle size, PDI, zeta potential, entrapment efficiency and in vitro drug release.According to the results, an optimized CD/CS-SCU-NP formulation was prepared. Results for particle size, PDI, zeta potential and entrapment efficiency were found to be around 200 nm,0.5, 25 mV, and 70% respectively. For in vitro study, the release of SCU from the NPs exhibited a biphasic release and was in accordance with Higuchi equation. The optimized preparation was simple with the probability for industrialization. The combination use of RSM, BBD and overall desirability values could provide a promising application for incorporating CD into CS nanoparticles as drug delivery carrier and help develop lab-scale procedures.
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.
基金2018 Anhui Provincial Quality Engineering Project(No.2018jyxm1273)Major Provincial Natural Science Research Project of Anhui Universities(No.KJ2016SD60)2021 Anhui University Students’Innovation and Entrepreneurship Plan Project。
文摘Objective:The Box-Behnken response surface method combined with fingerprints was used to optimize the extraction process of total anthraquinone from Cassia seeds.Methods:A three-factor,three-level response surface test was conducted based on the single-factor test with comprehensive evaluation as the measurement index.The comprehensive evaluation indexes included the extraction rate of total anthraquinone of Cassia seeds or the equivalent amount of herbs per gram of total anthraquinone of Cassia seeds,the normalized value of peak areas of 5 index components such as aurantio obtusin in the fingerprint of each sample to 16 shared peaks and the similarity of fingerprints(the reference fingerprint was established by the extraction solvent for the determination of Cassia seeds content in the Chinese Pharmacopoeia 2020 edition)with the weights of 0.2,0.5 and 0.3,respectively.Results:The best extraction process was obtained:the liquid-to-material ratio was 20:1(mL·g-1),the extraction solvent was mixture of 60%ethanol-ethyl acetate(2:1),and the extraction time was 15.12 min.The results of five sets of validation experiments showed that the overall evaluation of total anthraquinone of cassia seeds by the best process was 0.528(RSD=0.45%),and the prediction result of response surface method model was 0.531,and the relative error with the prediction result was 0.531.The relative error of the predicted results was 0.56%,and the best extraction process was consistent with the model prediction,and the obtained best process could be used for the extraction of total anthraquinone from Cassia seeds.Conclusion:The Box-Behnken response surface method combined with the fingerprint technique can be used to find the best reaction conditions and examine the interactions among the factors in a comprehensive and accurate manner,which can provide reference for the optimization and evaluation of the extraction process of Chinese medicine.
基金Projects(51275235, 50975135) supported by the National Natural Science Foundation of ChinaProject(U0934004) supported by the Natural Science Foundation of Guangdong Province, ChinaProject(2011CB707602) supported by the National Basic Research Program of China
文摘A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.
基金Projects(51275138,51475025)supported by the National Natural Science Foundation of ChinaProject(12531109)supported by the Science Foundation of Heilongjiang Provincial Department of Education,China+1 种基金Projects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program,ChinaProject(2015M580037)supported by Postdoctoral Science Foundation of China
文摘To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.
基金Supported by Chinese Medicine Science and Technology Project of Guangxi Administration of Traditional Chinese Medicine(GZLC14-31)Science and Technology Research and Development Program of Guilin Bureau of Technology(20130403-4)+1 种基金Guangxi"2011 Collaborative Innovation Center"-Zhuang and Yao Medicine Collaborative Innovation Center(Gui201320)the Autonomous Region-Level College Students’ Innovation and Entrepreneurship Training Program(201710601082)
文摘[Objectives] To optimize the extraction process of total flavonoids in stems of Mallotus apelta. [Methods]On the basis of singlefactor test,with volume fraction of ethanol,extraction time and ratio of solvent as independent variables,the content of total flavonoids as dependent variables,the completely secondary response surface regression fitting was conducted on the independent and dependent variables,and the Response Surface Method was used to optimize the optimum extraction process of total flavonoids in Mallotus apelta stems and predict the optimum process. [Results] The optimum extraction process of total flavonoids in Mallotus apelta was determined as follows: ethanol concentration of 71. 5%; extraction time of 154. 6 min; solid-liquid ratio of 1∶19. 2; total flavonoids content of 7. 060 mg/g; fitted binomial squared correlation coefficient R^2= 0. 8751.[Conclusions]Composite Design/Response Surface Method could be used in the extraction process optimization of total flavonoids in Mallotus apelta stems,the mathematical model established had high prediction accuracy,the method was simple and operability was good.
文摘Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and temperature, a Taguchi experimental design was worked out. An L27 orthogonal array was chosen to take the above-mentioned parameters and relevant interactions into account. Response surface method was the tool used to analyze the experimental design results. Al/Ti, ethylene pressure and temperature were selected as experimental design factors, and catalyst activity and polymerization yield were the response parameters. Increasing pressure, due to an increment in monomer accessibility, and rising Al/Ti, because of higher reduction in the catalysts, cause an increase in both polymerization yield and catalyst activity. Nonetheless, a higher temperature, thanks to reducing ethylene solubility in the slurry medium and partially catalyst destruction, lead to a reduction in both response parameters. A synergistic effect was also observed between temperature and pressure. All catalyst activities will reduce in the presence of hydrogen. Molecular weight also shows a decline in the presence of hydrogen as a transfer agent. However, the polydispersity index remains approximately intact. Using SEM, various morphologies, owing to different catalyst morphologies, were seen for the polyethylene.
基金Funded by the Key Research and Development Projects in Shaanxi Province(No.2022SF-328)Science and Technology Project of Shaanxi Department of Transportation(Nos.19-10K,19-28K)Science and Technology Project of Henan Department of Transportation(No.2020J-2-3)。
文摘In order to comprehensively utilize the remaining bamboo residue of bamboo products,this paper presents a research on recycling the bamboo fibers from bamboo residue for improving the performance of the asphalt mixtures.First of all,the basic performance parameters of sinocalamus affinis fiber,phyllostachys pubescens fiber,green bamboo fiber were tested and analyzed,and the optimal content and length were put forward.Then,the mix ratio design of the bamboo fiber modified asphalt mixture was further designed through the response surface method,and was verified the rationality of the mix ratio.Finally,the mixture specimens were made according to the experimental design mix ratio,and the high temperature,low temperature performance and moisture susceptibility of the bamboo fiber modified mixtures asphalt were tested.The results showed that the high temperature performance,low temperature performance and moisture susceptibility of bamboo fiber modified asphalt mixtures were improved compared with the performance of SBS modified asphalt mixture.When the length of bamboo fiber is 7.25 mm and the content of 0.22%,the road performance of the asphalt mixture was optimal.Consequentially,the decomposition of bamboo residue into bamboo fiber and its application in asphalt pavement can improve the reuse of bamboo waste,with remarkable environmental benefits and great promotion value.
基金the National Natural Science Founda-tion of China (No. 10672100)
文摘Radar cross section (RCS) reduction technologies are very important in survivability of the military naval vessels. Ship appearance shaping as an effective countermeasure of RCS reduction redirects the scattered energy from one angular region of interest in space to another region of little interest. To decrease the scattering electromagnetic signals from ship scientifically, optimization methods should be introduced in shaping design. Based on the assumption of the characteristic section design method, mathematical formulations for optimal shaping design were established. Because of the computation-intensive analysis and singularity in shaping optimization, the response surface method (RSM) combined genetic algorithm (GA) was proposed. The poly-nomial response surface method was adopted in model approximation. Then genetic algorithms were employed to solve the surrogate optimization problem. By comparison RCS of the conventional and the optimal design, the superiority and effectiveness of proposed design methodology were verified.
基金funded by Directorate of Research and Humanity Engagement (DRPM), Universitas Indonesia via grant “Hibah PITTA 2017” with No. 328/UN2.R3.1/HKP.05.00/ 2017
文摘Objective: To optimize the ionic liquid based microwave-assisted extraction (IL-MAE) of polyphenolic content from Peperomia pellucida (L) Kunth. Methods: The IL-MAE factors as experimental design parameters, including microwave power, extraction time, ionic liquid concentration, and liquid–solid ratio had been involved. Response surface methodology and Box–Behnken design were used to obtain predictive model (multivariate quadratic regression equation) and optimization of the extraction process. The response surface was analyzed by using the yields of total polyphenolic content as response value. Results: Based on the obtained results the optimum extraction condition, including microwave power of 30% Watts, extraction time of 18.5 min, the ionic liquid concen-tration of 0.79 mol/L, and the liquid–solid ratio of 10.72 mL/g 1-Buthyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4) as a solvent was selected. The regression model was obtained to predicts the yields from Peperomia pellucida:Y = 30.250 – 1.356X1 + 2.655X2 + 2.252X3 – 0.565X4 + 0.990 X1X3 – 8.172 X1X4 – 3.439 X3X4 – 4.178 X12 – 3.210 X32 – 6.786 X42 – 7.290 X12X3 + 5.575 X1X32 – 4.843 X32X4 with R2 = 0.82519. Scale-up confirmation test was obtained the maximum yields of total polyphenolics content with the amount of 31.1725μg GAE/g. Conclusions: The IL-MAE method produced a higher extraction polyphenolic and performed rapidly, easily and efficiently.
基金support provided by the Fundamental Research Funds for the Central Universities (No. 12CX06043A) of Chinathe Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology,SOA(No. 201407)
文摘In this research, the degradation of dibenzothiophene(DBT) was investigated by using Pseudomonas sp. LKY-5 isolated from oil contaminated soil. The response surface methodology(RSM) based on the Box-Behnken design(BBD) was applied for evaluating the interactive effects of four independent variables including substrate concentration, temperature, pH and agitation rate on the DBT removal response. A total of 29 experiments for four factors at three levels were conducted in present study. A second-order regression model was then developed, and the analysis of variance(ANOVA) illustrated that the proposed quadratic model could be utilized to navigate the design space. The value of determination coefficient(R2=0.953 4) indicated a satisfactory agreement between the quadratic model and the experimental data. It was found that DBT removal was more significantly affected(P<0.000 1) by substrate concentration compared with other three parameters. An 100% degradation of DBT could be obtained by Pseudomonas sp. LKY-5 at a substrate concentration of 100 mg/L.
基金supported by the Energy Policy and Planning Office, Ministry of Energy Royal Thai Government under the grant for supporting conservation of energy
文摘The production of biodiesel through a transesterification method produces a large amount of wastewater that contains high levels of chemical oxygen demand (COD) and oil and grease (O&G). Currently, flotation is the conventional primary treatment for O&G removal prior to biological treatments. In this study, electrocoagulation (EC) was adopted to treat the biodiesel wastewater. The effects of initial pH, applied voltage, and reaction time on the EC process for the removal of COD, O&G, and suspended solids (SS) were investigated using one factor at a time experiment. Furthermore, the Box-Behnken design, an experimental design for response surface methodology (RSM), was used to create a set of 15 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the pollutant removals. The experimental results show that EC could effectively reduce COD, O&G, and SS by 55.43%, 98.42%, and 96.59%, respectively, at the optimum conditions of pH 6.06, applied voltage 18.2 V, and reaction time 23.5 min. The experimental observations were in reasonable agreement with the modeled values.
文摘In this paper, the estimation capacities of the response surface methodology (RSM) and artificial neural network (ANN), in a microwave-assisted extraction method to determine the amount of zinc in fish samples were investigated. The experiments were carried out based on a 3-level, 4-variable Box–Behnken design. The amount of zinc was considered as a function of four independent variables, namely irradiation power, irradiation time, nitric acid concentration, and temperature. The RSM results showed the quadratic polynomial model can be used to describe the relationship between the various factors and the response. Using the ANN analysis, the optimal configuration of the ANN model was found to be 4-10-1. After predicting the model using RSM and ANN, two methodologies were then compared for their predictive capabilities. The results showed that the ANN model is much more accurate in prediction as compared to the RSM.
基金Supported by Scientific and Technological Planning Project of Pu'er City of Yunnan Province(2012kj007)
文摘[Objectives] To increase the survival rate of tissue culture seedlings of Dendrobium officinale,and optimize the conditions of rooting medium by the response surface methodology( RSM). [Methods]The effects of 6-BA concentration,NAA concentration,potato amount and the amount of mashed banana on the growth of seedlings were determined by single factor experiment and were analyzed by Box-Behnken design and response surface methodology. [Results]The optimal culture conditions: rooting medium 1/2 MS + 6-BA 0. 24 mg/L + mashed banana 87. 63 g/L + potato 89. 30 g/L + NAA 0. 52 mg/L + sucrose 20. 0 g/L + activated carbon 4. 0 g/L + agar 7. 0 g/L,p H 5. 8,and light intensity 2 000 Lx. [Conclusions]The model established by response surface methodology has a good predictability and could be used to optimize the conditions of tissue culture and rooting medium of D. officinale.
文摘Wide range of rotating machinery contains an inherent amount of unbalance which leads to increase in the vibration level and related faults.In this work,the effect of different operating conditions viz.the unbalanced weight,radius,speed and position of the rotor disc on the unbalance in rotating machine are studied experimentally and analyzed by using Response Surface Methodology(RSM).RSM is a technique which consists of mathematical and statistical methods to develop the relationship between the inputs and outputs of a system by distinct functions.L27 Orthogonal Array(OA)was developed by using Design of Experiments(DOE)according to which experimentation has been carried out.Three accelerometer sensors were mounted to record the vibration responses(accelerations)in radially vertical,horizontal and axial directions.The responses recorded as root mean square values are then analysed using RSM.The relationship between response and operating factors has been established by developing a second order,non-linear mathematical model.Analysis of variance(ANOVA)has been performed for verification of the developed mathematical models.Results obtained from the analysis show that the unbalance weight and speed are most significant operating conditions that contribute the most to the effect the unbalance has on the rotating spindle.
基金Supported by Project of Department of Education of Liaoning Province(L2017lkyfwdf-05)Natural Science Foundation Project of Department of Education of Liaoning Province(20180551223&2016003003)
文摘[Objectives] To optimize the extraction process and determine the total triterpenoids from Semen Trichosanthis.[Methods]The Box-behnken response surface methodology was applied to optimize the extraction conditions of total triterpenoids in Semen Trichosanthis.And the spectrophotometry was used to determine the content of total triterpenoids in Semen Trichosanthis.[Results] The optimal extraction conditions were solid to liquid ratio of 40∶ 1,ultrasonic time of 20 min,and ultrasonic power of 100 W.Under these conditions,the content of total triterpenoids in Semen Trichosanthis was significantly different among the 10 production areas,among which the No.9 production area(Anhui 1) had the highest total triterpenoids content of 45.71 mg/g,while No.7 production area(Shandong) had the lowest total triterpenoids content of 15.22 mg/g.[Conclusions]The Box-behnken response surface methodology is reliable for the extraction of total triterpenoids in Semen Trichosanthis,and the spectrophotometry is proper for determining the content of total triterpenoids in Semen Trichosanthis.There are large differences in the content of total triterpenoids in Semen Trichosanthis produced in different areas.
基金financially supported by the Key Research Project of Shandong Province (No. 2017CXGC 1004)the National Natural Science Foundation of China (No. 21878178)+1 种基金the Shandong Science and Technology Development Plan (No. 2018GGX107001)the Young Tai- shan Scholars Program of Shandong Province
文摘In this work,response surface methodology(RSM)was employed to model and optimize electrodialysis process for mercury(Hg(II))removal from seaweed extracts.Box-Behnken design(BBD)was utilized to evaluate the effects and the interaction of influential variables such as operating voltage,influent flow rate,initial concentration of Hg(II)on the removal rate of Hg(II).The developed regression model for removal rate response was validated by analysis of variance,and presented a good agreement of the experimental data with the quadratic equation with high value coefficient of determination value(R2=0.9913,RAdj 2=0.9678).The optimum operating parameters were determined as 7.17V operating voltage,72.54L h−1 influent flow rate and 5.04mgL−1 initial concentration of mercury.Hg(II)removal rate of 76.45%was acquired under the optimum conditions,which showed good agreement with model-predicted(75.81%)result.The results revealed that electrodialysis can be considered as a promising strategy for removal of Hg(II)from seaweed extracts.
文摘This study aimed to investigate optimal fermentation conditions of biological acetic acid fermentation for vinegar production. Optimization was performed on 3 acetic acid bacteria strains namely VMA1, VMA7 and VMAO using Response Surface Methodology (RSM). A Box-Behnken-Design (BBD) was achieved with three different independent process parameters involving: fermentation temperature, original alcohol concentration and original acetic acid concentration and one dependent variable (acetic acid yield). The results showed that the mathematical models describe correctly the relationship between responses and factors (F values of the models (p R<sup>2</sup> (coefficient of correlation) respectively 0.96, 0.94, 0.98, and adjusted R<sup>2</sup> 0.95, 0.92, 0.98). The maximum acidity was obtained respectively at fermentation temperatures, original alcohol concentrations and original acetic acid concentrations ranging from [37.5°C - 45°C], [16% - 20% (v/v)], [1.5% - 2% (w/v)] for VMA1, [40°C - 45°C], [14.5% - 20% (v/v)], [1.7% - 2% (w/v)] for VMA7 and [42°C - 45°C], [17% - 20% (v/v)], [1.5% - 2% (w/v)] for VMAO. The use of these acetic strains in the production of vinegar may seriously lead to a decrease or even an ablation of the costs related to the cooling of bioreactors especially in warm and hot countries, in the context of global warming.
文摘Gymnodimine (GYM), a fast-acting marine toxin, is destructive to aquaculture and human health through contaminated shellfish. The current detection methods in GYM have definite drawbacks in operation, such as the demand for delicate instruments and the consumption of time. Therefore, silver colloid was utilized as a surface-enhanced Raman scattering (SERS) desirable substrate for sensitive and rapid detection of GYM in lake and shellfish samples. The theoretical spectrum of GYM is calculated by density functional theory (DFT), and the substrate performance is evaluated by a rhodamine 6 G probe. Under the optimal SERS experimental condition calculated by the response surface methodology, the low limit of detection of 0.105 μM with R<sup>2</sup> of 0.9873 and a broad linearity range of 0.1 - 10 μM was achieved for GYM detection. In addition, the substrate was satisfyingly applied to detect gymnodimine in the lake and shellfish matrix samples with LOD as low as 0.148 μM and 0.170 μM, respectively. These results demonstrated a promising SERS platform for detecting marine toxins in seafood for food safety and pharmaceutical research.
基金financially supported by the Saudi Geological Survey through a doctoral fellowship at McGill University
文摘This paper examines the stability condition of a jointed rock slope in the south western region of Saudi Arabia using deterministic and probabilistic approaches,under both dry and wet conditions.The study area is characterized by complex geology in rugged terrains.The stability analysis is carried out using the code FLAC3D to generate a 3-dimensional,ubiquitous joint model,to determine the influence of the dominant,unfavourable discontinuity orientation with respect to the slope face.The deterministic analysis is first implemented using the mean values of the selected random variables,namely the dip,dip direction and friction angle of the dominant discontinuity set,and the stability condition is assessed with a factor of safety based on the classical frictional joint constitutive model.A Box-Behnken design(BBD)approach is then adopted to create the surface response function as a second order polynomial for the factor of safety.To do so,fifteen FLAC3D models are generated in accordance with the BBD.Based on this,10,000 simulations of different slope realizations are carried out using Monte-Carlo simulation technique,and the probability of unsatisfactory of performance of the rock slope is assessed.It is shown that the probabilistic approach provides more insight and confidence in the stability condition of the rock slope,both under dry and steady state heavy rainfall conditions.A discussion is presented on the significance of accepting lower safety factors when heavy rainfall conditions are encountered.