Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and te...Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and temperature, a Taguchi experimental design was worked out. An L27 orthogonal array was chosen to take the above-mentioned parameters and relevant interactions into account. Response surface method was the tool used to analyze the experimental design results. Al/Ti, ethylene pressure and temperature were selected as experimental design factors, and catalyst activity and polymerization yield were the response parameters. Increasing pressure, due to an increment in monomer accessibility, and rising Al/Ti, because of higher reduction in the catalysts, cause an increase in both polymerization yield and catalyst activity. Nonetheless, a higher temperature, thanks to reducing ethylene solubility in the slurry medium and partially catalyst destruction, lead to a reduction in both response parameters. A synergistic effect was also observed between temperature and pressure. All catalyst activities will reduce in the presence of hydrogen. Molecular weight also shows a decline in the presence of hydrogen as a transfer agent. However, the polydispersity index remains approximately intact. Using SEM, various morphologies, owing to different catalyst morphologies, were seen for the polyethylene.展开更多
Gymnodimine (GYM), a fast-acting marine toxin, is destructive to aquaculture and human health through contaminated shellfish. The current detection methods in GYM have definite drawbacks in operation, such as the dema...Gymnodimine (GYM), a fast-acting marine toxin, is destructive to aquaculture and human health through contaminated shellfish. The current detection methods in GYM have definite drawbacks in operation, such as the demand for delicate instruments and the consumption of time. Therefore, silver colloid was utilized as a surface-enhanced Raman scattering (SERS) desirable substrate for sensitive and rapid detection of GYM in lake and shellfish samples. The theoretical spectrum of GYM is calculated by density functional theory (DFT), and the substrate performance is evaluated by a rhodamine 6 G probe. Under the optimal SERS experimental condition calculated by the response surface methodology, the low limit of detection of 0.105 μM with R<sup>2</sup> of 0.9873 and a broad linearity range of 0.1 - 10 μM was achieved for GYM detection. In addition, the substrate was satisfyingly applied to detect gymnodimine in the lake and shellfish matrix samples with LOD as low as 0.148 μM and 0.170 μM, respectively. These results demonstrated a promising SERS platform for detecting marine toxins in seafood for food safety and pharmaceutical research.展开更多
Objective:To prepare the liposomes of mangrove oil,Optimization of the formulation of mangrove oil liposomes by Box Behnken response surface methodology.Methods:Preparation of Rhododendron oil liposomes by ethanol inj...Objective:To prepare the liposomes of mangrove oil,Optimization of the formulation of mangrove oil liposomes by Box Behnken response surface methodology.Methods:Preparation of Rhododendron oil liposomes by ethanol injection probe ultrasound,Determination of gemacrone by HPLC.The ratio of lecithin to cholesterol(X1),drug lipid ratio(X2)and phospholipid concentration(X3)were used as independent variables,and encapsulation efficiency(Y)was used as dependent variable,the formulation was optimized by Box Behnken response surface method,and the entrapment efficiency was predicted.The entrapment efficiency,particle size,polydispersity index(PDI),Zeta potential and drug loading of the optimized liposomes were evaluated.Results:The optimal prescription and preparation of Folium Rhododendri Daurici oil liposome was confirmed as follows:X1=7.28:1、X2=11.34:1、X3=9.32mg·mL-1,the encapsulation efficiency was(82.55±1.66)%,the particle size was(130.531±46)nm,the polydispersity index was 0.185±05,Zeta potential was(21.970±36)mV,the drug loading was(5.941±0.12)%.Conclusion:The Box Behnken response surface method is accurate to obtain the optimal formulation of mangrove oil liposomes,it has high precision and good prediction effect.And the preparation process of mangrove oil liposomes is stable and feasible.展开更多
Objective:To optimize the extraction process of total flavones in Trichosanthis Fructus(composed of Trichosanthis pericarpium and Trichosanthis semen in certain proportion).Methods:The effects of the mixture ratio of ...Objective:To optimize the extraction process of total flavones in Trichosanthis Fructus(composed of Trichosanthis pericarpium and Trichosanthis semen in certain proportion).Methods:The effects of the mixture ratio of Trichosanthis pericarpium and Trichosanthis semen,ethanol concentration,ultrasonic extraction time and extraction temperature on the extraction rate of total flavonoids in Trichosanthis Fructus were investigated.The extraction process of total flavonoids in Trichosanthis Fructus was optimized by Box-Behnken response surface method combined with differential spectrophotometry.Results:The optimum extraction conditions of total flavonoids in Trichosanthis Fructus were as follows:The mixture ratio of Trichosanthis pericarpium and Trichosanthis semen was 4:6,the ethanol concentration was 70%,the ultrasonic extraction time was 60min and the extraction temperature was 40℃.Conclusion:Box-Behnken response surface method combined with differential spectrophotometry can optimize the extraction process of total flavonoids from Trichosanthis Fructus,which can provide reference for the extraction and application of total flavonoids in Trichosanthis Fructus.展开更多
The production of biodiesel through a transesterification method produces a large amount of wastewater that contains high levels of chemical oxygen demand (COD) and oil and grease (O&G). Currently, flotation is t...The production of biodiesel through a transesterification method produces a large amount of wastewater that contains high levels of chemical oxygen demand (COD) and oil and grease (O&G). Currently, flotation is the conventional primary treatment for O&G removal prior to biological treatments. In this study, electrocoagulation (EC) was adopted to treat the biodiesel wastewater. The effects of initial pH, applied voltage, and reaction time on the EC process for the removal of COD, O&G, and suspended solids (SS) were investigated using one factor at a time experiment. Furthermore, the Box-Behnken design, an experimental design for response surface methodology (RSM), was used to create a set of 15 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the pollutant removals. The experimental results show that EC could effectively reduce COD, O&G, and SS by 55.43%, 98.42%, and 96.59%, respectively, at the optimum conditions of pH 6.06, applied voltage 18.2 V, and reaction time 23.5 min. The experimental observations were in reasonable agreement with the modeled values.展开更多
This paper examines the stability condition of a jointed rock slope in the south western region of Saudi Arabia using deterministic and probabilistic approaches,under both dry and wet conditions.The study area is char...This paper examines the stability condition of a jointed rock slope in the south western region of Saudi Arabia using deterministic and probabilistic approaches,under both dry and wet conditions.The study area is characterized by complex geology in rugged terrains.The stability analysis is carried out using the code FLAC3D to generate a 3-dimensional,ubiquitous joint model,to determine the influence of the dominant,unfavourable discontinuity orientation with respect to the slope face.The deterministic analysis is first implemented using the mean values of the selected random variables,namely the dip,dip direction and friction angle of the dominant discontinuity set,and the stability condition is assessed with a factor of safety based on the classical frictional joint constitutive model.A Box-Behnken design(BBD)approach is then adopted to create the surface response function as a second order polynomial for the factor of safety.To do so,fifteen FLAC3D models are generated in accordance with the BBD.Based on this,10,000 simulations of different slope realizations are carried out using Monte-Carlo simulation technique,and the probability of unsatisfactory of performance of the rock slope is assessed.It is shown that the probabilistic approach provides more insight and confidence in the stability condition of the rock slope,both under dry and steady state heavy rainfall conditions.A discussion is presented on the significance of accepting lower safety factors when heavy rainfall conditions are encountered.展开更多
Deformation prediction and the analysis of underground goaf are important to the safe and efficient recovery of residual ore when shifting from open-pit mining to underground mining.To address the comprehensive proble...Deformation prediction and the analysis of underground goaf are important to the safe and efficient recovery of residual ore when shifting from open-pit mining to underground mining.To address the comprehensive problem of stability in the double mined-out area of the Tong-Lv-Shan(TLS)mine,which employed the dry stacked gangue technology,this paper applies the function fitting theory and a regression analysis method to screen the sensitive interval of four influencing factors based on single-factor experiments and the numerical simulation software FLAC3D.The influencing factors of the TLS mine consist of the column thickness(d),gob area span(D),boundary pillar thickness(h)and height of tailing gangue(H).The fitting degree between the four factors and the displacement of the gob roof(W)is reasonable because the correlation coefficient(R2)is greater than0.9701.After establishing29groups that satisfy the principles of Box-Behnken design(BBD),the dry gangue tailings process was re-simulated for the selected sensitive interval.Using a combination of an analysis of variance(ANOVA),regression equations and a significance analysis,the prediction results of the response surface methodology(RSM)show that the significant degree for the stability of the mined-out area for the factors satisfies the relationship of h>D>d>H.The importance of the four factors cannot be disregarded in a comparison of the prediction results of the engineering test stope in the TLS mine.By comparing the data of monitoring points and function prediction,the proposed method has shown promising results,and the prediction accuracy of RSM model is acceptable.The relative errors of the two test stopes are1.67%and3.85%,respectively,which yield satisfactory reliability and reference values for the mines.展开更多
The aim of this research was to develop an optimum fermentation and composition model for a new fermented pumpkin-based beverage with high probiotic survival and-glucosidase inhibitory activity.Relationship between fe...The aim of this research was to develop an optimum fermentation and composition model for a new fermented pumpkin-based beverage with high probiotic survival and-glucosidase inhibitory activity.Relationship between fermentation temperature,inoculum and ingredient concentration with response variables(fermentation time at the fermentation endpoint pH 4.5,survival rate of Lactobacillus mali K8 in pumpkin-based beverage treated with simulated gastrointestinal tract enzyme fluids,-glucosidase inhibitory activity and sensory overall acceptability after 4 weeks of refrigerated storage)was investigated using response surface methodology.Optimal formulation was obtained at an approximation of 40%pumpkin puree concentration,8 Log CFU/mL inoculum and at 35℃.The product derived from this optimum formula reached the fermentation endpoint after 28.34±0.10 h and the quality change during 4 weeks storage was studied.The product achieved 88.56±0.67%of L.mali survival after treatment with simulated gastric and intestinal juices;demonstrated 95.89±0.30% α-glucosidase inhibitory activity,as well as scored 6.99±0.40 on sensory overall acceptability after 4 weeks of storage.These findings illustrated that the model is effective in improving probiotic survival and α-glucosidase inhibitory activity with excellent sensory acceptability,thus may offer a dietary means for the management of hyperglycaemia.展开更多
To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features ...To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features of melting process of regenerative aluminum melting furnaces. Based on validating results by heat balance test for an aluminum melting furnace, CFD (computational fluid dynamics) technique, in association with statistical experimental design were used to optimize the melting process of the aluminum melting furnace. Four important factors influencing the melting time, such as horizontal angle between burners, height-to-radius ratio, natural gas mass flow and air preheated temperature, were identified by PLACKETT-BURMAN design. A steepest descent method was undertaken to determine the optimal regions of these factors. Response surface methodology with BOX-BEHNKEN design was adopted to further investigate the mutual interactions between these variables on RSD (relative standard deviation) of aluminum temperature, RSD of furnace temperature and melting time. Multiple-response optimization by desirability function approach was used to determine the optimum melting process parameters. The results indicate that the interaction between the height-to-radius ratio and horizontal angle between burners affects the response variables significantly. The predicted results show that the minimum RSD of aluminum temperature (12.13%), RSD of furnace temperature (18.50%) and melting time (3.9 h) could be obtained under the optimum conditions of horizontal angle between burners as 64°, height-to-radius ratio as 0.3, natural gas mass flow as 599 m3/h, and air preheated temperature as 639 ℃. These predicted values were further verified by validation experiments. The excellent correlation between the predicted and experimental values confirms the validity and practicability of this statistical optimum strategy.展开更多
In this paper, the estimation capacities of the response surface methodology (RSM) and artificial neural network (ANN), in a microwave-assisted extraction method to determine the amount of zinc in fish samples were in...In this paper, the estimation capacities of the response surface methodology (RSM) and artificial neural network (ANN), in a microwave-assisted extraction method to determine the amount of zinc in fish samples were investigated. The experiments were carried out based on a 3-level, 4-variable Box–Behnken design. The amount of zinc was considered as a function of four independent variables, namely irradiation power, irradiation time, nitric acid concentration, and temperature. The RSM results showed the quadratic polynomial model can be used to describe the relationship between the various factors and the response. Using the ANN analysis, the optimal configuration of the ANN model was found to be 4-10-1. After predicting the model using RSM and ANN, two methodologies were then compared for their predictive capabilities. The results showed that the ANN model is much more accurate in prediction as compared to the RSM.展开更多
[Objectives] To increase the survival rate of tissue culture seedlings of Dendrobium officinale,and optimize the conditions of rooting medium by the response surface methodology( RSM). [Methods]The effects of 6-BA con...[Objectives] To increase the survival rate of tissue culture seedlings of Dendrobium officinale,and optimize the conditions of rooting medium by the response surface methodology( RSM). [Methods]The effects of 6-BA concentration,NAA concentration,potato amount and the amount of mashed banana on the growth of seedlings were determined by single factor experiment and were analyzed by Box-Behnken design and response surface methodology. [Results]The optimal culture conditions: rooting medium 1/2 MS + 6-BA 0. 24 mg/L + mashed banana 87. 63 g/L + potato 89. 30 g/L + NAA 0. 52 mg/L + sucrose 20. 0 g/L + activated carbon 4. 0 g/L + agar 7. 0 g/L,p H 5. 8,and light intensity 2 000 Lx. [Conclusions]The model established by response surface methodology has a good predictability and could be used to optimize the conditions of tissue culture and rooting medium of D. officinale.展开更多
By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction met...By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction method. In order to determine the operating conditions of the system, the effects of the concentration of Fe3+ ions(ranging from 0.1 to 0.2 mol/L), the liquid-gas volume ratio(ranging from 15 to 25 L/m3) and the high gravity factor(ranging from 36 to 126) on the removal of H2 S were studied by means of the Box-Behnken design(BBD) under response surface methodology(RSM). The overall results have demonstrated that the BBD with an experimental design can be used effectively in the optimization of the desulfurization process. The optimal conditions based on both individualized and combined responses(at a Fe3+ ion concentration of 0.16 mol/L, a liquid-gas volume ratio of 20.67 L/m3 and a high gravity factor of 87) were found. Under this optimum condition, the desulfurization efficiency could reach 98.81% when the H2 S concentration was 7 g/m3 in APG. In this work, the sulfur product was analyzed by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the energy dispersive X-ray spectrometer(EDX). The results of analysis show that the sulfur is made of the high-purity orthorhombic crystals, which are advantageous to environmental conservation.展开更多
[Objectives] To optimize the extraction process and determine the total triterpenoids from Semen Trichosanthis.[Methods]The Box-behnken response surface methodology was applied to optimize the extraction conditions of...[Objectives] To optimize the extraction process and determine the total triterpenoids from Semen Trichosanthis.[Methods]The Box-behnken response surface methodology was applied to optimize the extraction conditions of total triterpenoids in Semen Trichosanthis.And the spectrophotometry was used to determine the content of total triterpenoids in Semen Trichosanthis.[Results] The optimal extraction conditions were solid to liquid ratio of 40∶ 1,ultrasonic time of 20 min,and ultrasonic power of 100 W.Under these conditions,the content of total triterpenoids in Semen Trichosanthis was significantly different among the 10 production areas,among which the No.9 production area(Anhui 1) had the highest total triterpenoids content of 45.71 mg/g,while No.7 production area(Shandong) had the lowest total triterpenoids content of 15.22 mg/g.[Conclusions]The Box-behnken response surface methodology is reliable for the extraction of total triterpenoids in Semen Trichosanthis,and the spectrophotometry is proper for determining the content of total triterpenoids in Semen Trichosanthis.There are large differences in the content of total triterpenoids in Semen Trichosanthis produced in different areas.展开更多
The Adansonia digitate L. known as Baobab is the only species present in West Africa and grows wild. All parts of the plant are used by humans. In Senegal, baobab pulp is widely consumed;it is used as raw material in ...The Adansonia digitate L. known as Baobab is the only species present in West Africa and grows wild. All parts of the plant are used by humans. In Senegal, baobab pulp is widely consumed;it is used as raw material in small and medium enterprises (SMEs) for making juices, concentrates, jams, powder. Drinks or juices from baobab are highly appreciated by consumers;however rapid fermentation can happen even after pasteurization that can shorten their shelf-life. A Doehlert experimental design was used to find a good scale of heat treatment ensuring a proper conservation of baobab juice. Results of the experimental design showed that a heat treatment of 80°C for 10 min gives a baobab juice with good sanitary quality that meets the international standards.展开更多
In this work,response surface methodology(RSM)was employed to model and optimize electrodialysis process for mercury(Hg(II))removal from seaweed extracts.Box-Behnken design(BBD)was utilized to evaluate the effects and...In this work,response surface methodology(RSM)was employed to model and optimize electrodialysis process for mercury(Hg(II))removal from seaweed extracts.Box-Behnken design(BBD)was utilized to evaluate the effects and the interaction of influential variables such as operating voltage,influent flow rate,initial concentration of Hg(II)on the removal rate of Hg(II).The developed regression model for removal rate response was validated by analysis of variance,and presented a good agreement of the experimental data with the quadratic equation with high value coefficient of determination value(R2=0.9913,RAdj 2=0.9678).The optimum operating parameters were determined as 7.17V operating voltage,72.54L h−1 influent flow rate and 5.04mgL−1 initial concentration of mercury.Hg(II)removal rate of 76.45%was acquired under the optimum conditions,which showed good agreement with model-predicted(75.81%)result.The results revealed that electrodialysis can be considered as a promising strategy for removal of Hg(II)from seaweed extracts.展开更多
[Objectives]This study was conducted to screen best process parameters for making Foshou yam and honey can.[Methods]The Foshou yam produced from Wuxue was used as a raw material to prepare Foshou yam and honey nutriti...[Objectives]This study was conducted to screen best process parameters for making Foshou yam and honey can.[Methods]The Foshou yam produced from Wuxue was used as a raw material to prepare Foshou yam and honey nutritional can by combining Foshou yam with honey through screening,pre-cooking,filling,exhausting,cooling and other technical processes.The optimum technology parameter of Foshou yam and honey nutritional can was studied through single factor tests and response surface optimization.[Results]The optimum technical parameters of Foshou yam and honey nutritional can were citric acid concentration 0.1%,amount of edible salt 0.1%,cooking time 14 min and honey concentration 26%.Under these conditions,the final sensory score was 90.20.The prepared can was not only rich in nutrition,but also had good flavor and taste.[Conclusions]This study provides reference for the development and utilization of Foshou yam and the research and development of functional food.展开更多
In this research,activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator.The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate.M...In this research,activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator.The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate.Mala-chite green dye waste is a toxic and non-biodegradable material that damages the environment.Optimization of adsorption processes was carried out using Response Surface Methodology(RSM)with a Box-Behnken Design(BBD).The synthesized activated carbon was characterized using FTIR and SEM instruments.The FTIR spectra confirmed the presence of a sulfonate group(-SO_(3)H)in the activated carbon,indicating that the activation pro-cess using sulfuric acid was successful.SEM characterization shows that activated carbon has porous morphology.Optimization was carried out for three adsorption parameters,namely contact time(20,60,and 120 min),adsor-bent mass(0.005,0.025,and 0.05 g),and initial concentration of malachite green solution(5,50,and 100 mg·L^(-1)).The concentration of the malachite green solution was determined using a UV-Vis spectrophotometer at the max-imum wavelength of malachite green,618 nm.The optimum of malachite green adsorption using mangosteen peel activated carbon was obtained at a contact time of 80 min,an adsorbent mass of 0.032 g,and malachite green initial concentration of 25 mg·L^(-1),with a maximum removal percentage and maximum adsorption capacity of 93.66%and 19.345 mg·g^(-1),respectively.展开更多
In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion metho...In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion method,a green alternative to the traditional preparative routes.The catalyst was characterized using XRD,FTIR,SEM,EDX,XPS and TEM techniques.The synergistic effect of the composite CeO2/g-C3 N4/Ag was tested for catalytic reduction of 4-nitrophenol in the prese nce of sodium borohydride.The reaction was carried out at room tempe rature without any light source or exte rnal stirring.The individual and combined effects of four parameters,viz.,concentration of 4-NP,amount of catalyst,amount of NaBH4 and time for the reduction of reduction 4-NP were investigated using Box-Behnken design of response surface methodology(RSM).This statistical model was used to optimize the reaction conditions for maximum reduction of 4-NP.The optimum conditions for the reduction reaction are found to be 0.01 mmol/L 4-NP,15 mg catalyst,20 mg NaBH4 and 13.7 min time interval.展开更多
The adsorption of Pb(II)on silica gel synthesized from chemical glass bottle waste has been studied.The effect of independent variables(adsorbent dose,initial concentration of Pb(II),contact time,and pH)on the Pb(II)r...The adsorption of Pb(II)on silica gel synthesized from chemical glass bottle waste has been studied.The effect of independent variables(adsorbent dose,initial concentration of Pb(II),contact time,and pH)on the Pb(II)removal from water was evaluated and optimized using the Response Surface Methodology(RSM).Under optimized conditions(adsorbent dose:20 mg;contact time:30 min;initial Pb(II)concentration:120 mg.L^(−1);and pH:8),the removal of Pb(II)was 99.77%.The adsorption equilibrium data obtained from the batch experiment were investigated using different isotherm models.The Langmuir isotherm model fits the experimental data.This shows that the surface of the silica gel synthesized from chemical bottles waste was covered by a Pb(II)monolayer.XRF analysis showed that the synthesized silica gel had a SiO_(2) content of 75.63%.Amorphous silica was observed from XRD analysis.SEM-EDX characterization showed that Pb was adsorbed on the silica gel surface.SEM analysis showed that silica gel has irregular particles with a surface area of 297.08 m2.g^(−1) with a pore radius of 15.74 nm calculated from BET analysis.展开更多
This work focuses on the updating-based identification of the three-dimensional orthotropic elastic behavior of a thin carbon fiber reinforced plastic multilayer composite plate. This consists in identifying the engin...This work focuses on the updating-based identification of the three-dimensional orthotropic elastic behavior of a thin carbon fiber reinforced plastic multilayer composite plate. This consists in identifying the engineering constants that minimize the relative deviations between the first eight experimental and three-dimensional finite element frequencies of the vibrating free plate. For this purpose, a multi-objective optimization procedure is applied;it exploits a Particle Swarm Optimizer algorithm (PSO) that is coupled to a metamodeling by the new response surfaces method procedure (NRSMP);the latter is based on numerical design experiments. The conducted sensitivity analyses indicate that the four engineering constants of the two-dimensional elasticity are the most influent.展开更多
文摘Different Ziegler-Natta catalysts were employed to polymerize ethylene. To investigate the influences of reaction parameters, namely Al/Ti molar ratio, hydrogen and processing parameters, i.e. ethylene pressure and temperature, a Taguchi experimental design was worked out. An L27 orthogonal array was chosen to take the above-mentioned parameters and relevant interactions into account. Response surface method was the tool used to analyze the experimental design results. Al/Ti, ethylene pressure and temperature were selected as experimental design factors, and catalyst activity and polymerization yield were the response parameters. Increasing pressure, due to an increment in monomer accessibility, and rising Al/Ti, because of higher reduction in the catalysts, cause an increase in both polymerization yield and catalyst activity. Nonetheless, a higher temperature, thanks to reducing ethylene solubility in the slurry medium and partially catalyst destruction, lead to a reduction in both response parameters. A synergistic effect was also observed between temperature and pressure. All catalyst activities will reduce in the presence of hydrogen. Molecular weight also shows a decline in the presence of hydrogen as a transfer agent. However, the polydispersity index remains approximately intact. Using SEM, various morphologies, owing to different catalyst morphologies, were seen for the polyethylene.
文摘Gymnodimine (GYM), a fast-acting marine toxin, is destructive to aquaculture and human health through contaminated shellfish. The current detection methods in GYM have definite drawbacks in operation, such as the demand for delicate instruments and the consumption of time. Therefore, silver colloid was utilized as a surface-enhanced Raman scattering (SERS) desirable substrate for sensitive and rapid detection of GYM in lake and shellfish samples. The theoretical spectrum of GYM is calculated by density functional theory (DFT), and the substrate performance is evaluated by a rhodamine 6 G probe. Under the optimal SERS experimental condition calculated by the response surface methodology, the low limit of detection of 0.105 μM with R<sup>2</sup> of 0.9873 and a broad linearity range of 0.1 - 10 μM was achieved for GYM detection. In addition, the substrate was satisfyingly applied to detect gymnodimine in the lake and shellfish matrix samples with LOD as low as 0.148 μM and 0.170 μM, respectively. These results demonstrated a promising SERS platform for detecting marine toxins in seafood for food safety and pharmaceutical research.
基金Heilongjiang Province North Medicine and Functional Food Characteristic Discipline Construction Project(No.2018-TSXK-02)Heilongjiang Provincial Department of Education Project(No.12511574)。
文摘Objective:To prepare the liposomes of mangrove oil,Optimization of the formulation of mangrove oil liposomes by Box Behnken response surface methodology.Methods:Preparation of Rhododendron oil liposomes by ethanol injection probe ultrasound,Determination of gemacrone by HPLC.The ratio of lecithin to cholesterol(X1),drug lipid ratio(X2)and phospholipid concentration(X3)were used as independent variables,and encapsulation efficiency(Y)was used as dependent variable,the formulation was optimized by Box Behnken response surface method,and the entrapment efficiency was predicted.The entrapment efficiency,particle size,polydispersity index(PDI),Zeta potential and drug loading of the optimized liposomes were evaluated.Results:The optimal prescription and preparation of Folium Rhododendri Daurici oil liposome was confirmed as follows:X1=7.28:1、X2=11.34:1、X3=9.32mg·mL-1,the encapsulation efficiency was(82.55±1.66)%,the particle size was(130.531±46)nm,the polydispersity index was 0.185±05,Zeta potential was(21.970±36)mV,the drug loading was(5.941±0.12)%.Conclusion:The Box Behnken response surface method is accurate to obtain the optimal formulation of mangrove oil liposomes,it has high precision and good prediction effect.And the preparation process of mangrove oil liposomes is stable and feasible.
基金Anhui Universities Provincial Key Project of Natural Science Research(No.KJ2016SD60,KJ2015ZD41)。
文摘Objective:To optimize the extraction process of total flavones in Trichosanthis Fructus(composed of Trichosanthis pericarpium and Trichosanthis semen in certain proportion).Methods:The effects of the mixture ratio of Trichosanthis pericarpium and Trichosanthis semen,ethanol concentration,ultrasonic extraction time and extraction temperature on the extraction rate of total flavonoids in Trichosanthis Fructus were investigated.The extraction process of total flavonoids in Trichosanthis Fructus was optimized by Box-Behnken response surface method combined with differential spectrophotometry.Results:The optimum extraction conditions of total flavonoids in Trichosanthis Fructus were as follows:The mixture ratio of Trichosanthis pericarpium and Trichosanthis semen was 4:6,the ethanol concentration was 70%,the ultrasonic extraction time was 60min and the extraction temperature was 40℃.Conclusion:Box-Behnken response surface method combined with differential spectrophotometry can optimize the extraction process of total flavonoids from Trichosanthis Fructus,which can provide reference for the extraction and application of total flavonoids in Trichosanthis Fructus.
基金supported by the Energy Policy and Planning Office, Ministry of Energy Royal Thai Government under the grant for supporting conservation of energy
文摘The production of biodiesel through a transesterification method produces a large amount of wastewater that contains high levels of chemical oxygen demand (COD) and oil and grease (O&G). Currently, flotation is the conventional primary treatment for O&G removal prior to biological treatments. In this study, electrocoagulation (EC) was adopted to treat the biodiesel wastewater. The effects of initial pH, applied voltage, and reaction time on the EC process for the removal of COD, O&G, and suspended solids (SS) were investigated using one factor at a time experiment. Furthermore, the Box-Behnken design, an experimental design for response surface methodology (RSM), was used to create a set of 15 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the pollutant removals. The experimental results show that EC could effectively reduce COD, O&G, and SS by 55.43%, 98.42%, and 96.59%, respectively, at the optimum conditions of pH 6.06, applied voltage 18.2 V, and reaction time 23.5 min. The experimental observations were in reasonable agreement with the modeled values.
基金financially supported by the Saudi Geological Survey through a doctoral fellowship at McGill University
文摘This paper examines the stability condition of a jointed rock slope in the south western region of Saudi Arabia using deterministic and probabilistic approaches,under both dry and wet conditions.The study area is characterized by complex geology in rugged terrains.The stability analysis is carried out using the code FLAC3D to generate a 3-dimensional,ubiquitous joint model,to determine the influence of the dominant,unfavourable discontinuity orientation with respect to the slope face.The deterministic analysis is first implemented using the mean values of the selected random variables,namely the dip,dip direction and friction angle of the dominant discontinuity set,and the stability condition is assessed with a factor of safety based on the classical frictional joint constitutive model.A Box-Behnken design(BBD)approach is then adopted to create the surface response function as a second order polynomial for the factor of safety.To do so,fifteen FLAC3D models are generated in accordance with the BBD.Based on this,10,000 simulations of different slope realizations are carried out using Monte-Carlo simulation technique,and the probability of unsatisfactory of performance of the rock slope is assessed.It is shown that the probabilistic approach provides more insight and confidence in the stability condition of the rock slope,both under dry and steady state heavy rainfall conditions.A discussion is presented on the significance of accepting lower safety factors when heavy rainfall conditions are encountered.
基金Project(2017YFC0602902) supported by the National Science and Technology Pillar Program during the 13th Five-Year Plan Period,ChinaProject(2015CX005) supported by the Innovation Driven Plan of Central South University,ChinaProject(2016zzts445) supported by the Fundamental Research Funds for the Central Universities,China
文摘Deformation prediction and the analysis of underground goaf are important to the safe and efficient recovery of residual ore when shifting from open-pit mining to underground mining.To address the comprehensive problem of stability in the double mined-out area of the Tong-Lv-Shan(TLS)mine,which employed the dry stacked gangue technology,this paper applies the function fitting theory and a regression analysis method to screen the sensitive interval of four influencing factors based on single-factor experiments and the numerical simulation software FLAC3D.The influencing factors of the TLS mine consist of the column thickness(d),gob area span(D),boundary pillar thickness(h)and height of tailing gangue(H).The fitting degree between the four factors and the displacement of the gob roof(W)is reasonable because the correlation coefficient(R2)is greater than0.9701.After establishing29groups that satisfy the principles of Box-Behnken design(BBD),the dry gangue tailings process was re-simulated for the selected sensitive interval.Using a combination of an analysis of variance(ANOVA),regression equations and a significance analysis,the prediction results of the response surface methodology(RSM)show that the significant degree for the stability of the mined-out area for the factors satisfies the relationship of h>D>d>H.The importance of the four factors cannot be disregarded in a comparison of the prediction results of the engineering test stope in the TLS mine.By comparing the data of monitoring points and function prediction,the proposed method has shown promising results,and the prediction accuracy of RSM model is acceptable.The relative errors of the two test stopes are1.67%and3.85%,respectively,which yield satisfactory reliability and reference values for the mines.
基金The authors would like to appreciate and acknowledge ASEAN University Network(AUN)and Korea Association of the Southeast Asian Studies for providing financial support under ASEAN-ROK Academic Exchange Programme 2016/2017Universiti Sains Malaysia(USM)Vice Chancellor Award Scholarship and grant(RUI,1001/PTEKIND/811339).
文摘The aim of this research was to develop an optimum fermentation and composition model for a new fermented pumpkin-based beverage with high probiotic survival and-glucosidase inhibitory activity.Relationship between fermentation temperature,inoculum and ingredient concentration with response variables(fermentation time at the fermentation endpoint pH 4.5,survival rate of Lactobacillus mali K8 in pumpkin-based beverage treated with simulated gastrointestinal tract enzyme fluids,-glucosidase inhibitory activity and sensory overall acceptability after 4 weeks of refrigerated storage)was investigated using response surface methodology.Optimal formulation was obtained at an approximation of 40%pumpkin puree concentration,8 Log CFU/mL inoculum and at 35℃.The product derived from this optimum formula reached the fermentation endpoint after 28.34±0.10 h and the quality change during 4 weeks storage was studied.The product achieved 88.56±0.67%of L.mali survival after treatment with simulated gastric and intestinal juices;demonstrated 95.89±0.30% α-glucosidase inhibitory activity,as well as scored 6.99±0.40 on sensory overall acceptability after 4 weeks of storage.These findings illustrated that the model is effective in improving probiotic survival and α-glucosidase inhibitory activity with excellent sensory acceptability,thus may offer a dietary means for the management of hyperglycaemia.
基金Project(2009BSXT022) supported by the Dissertation Innovation Foundation of Central South University, ChinaProject(07JJ4016) supported by Natural Science Foundation of Hunan Province, ChinaProject(U0937604) supported by National Natural Science Foundation of China
文摘To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features of melting process of regenerative aluminum melting furnaces. Based on validating results by heat balance test for an aluminum melting furnace, CFD (computational fluid dynamics) technique, in association with statistical experimental design were used to optimize the melting process of the aluminum melting furnace. Four important factors influencing the melting time, such as horizontal angle between burners, height-to-radius ratio, natural gas mass flow and air preheated temperature, were identified by PLACKETT-BURMAN design. A steepest descent method was undertaken to determine the optimal regions of these factors. Response surface methodology with BOX-BEHNKEN design was adopted to further investigate the mutual interactions between these variables on RSD (relative standard deviation) of aluminum temperature, RSD of furnace temperature and melting time. Multiple-response optimization by desirability function approach was used to determine the optimum melting process parameters. The results indicate that the interaction between the height-to-radius ratio and horizontal angle between burners affects the response variables significantly. The predicted results show that the minimum RSD of aluminum temperature (12.13%), RSD of furnace temperature (18.50%) and melting time (3.9 h) could be obtained under the optimum conditions of horizontal angle between burners as 64°, height-to-radius ratio as 0.3, natural gas mass flow as 599 m3/h, and air preheated temperature as 639 ℃. These predicted values were further verified by validation experiments. The excellent correlation between the predicted and experimental values confirms the validity and practicability of this statistical optimum strategy.
文摘In this paper, the estimation capacities of the response surface methodology (RSM) and artificial neural network (ANN), in a microwave-assisted extraction method to determine the amount of zinc in fish samples were investigated. The experiments were carried out based on a 3-level, 4-variable Box–Behnken design. The amount of zinc was considered as a function of four independent variables, namely irradiation power, irradiation time, nitric acid concentration, and temperature. The RSM results showed the quadratic polynomial model can be used to describe the relationship between the various factors and the response. Using the ANN analysis, the optimal configuration of the ANN model was found to be 4-10-1. After predicting the model using RSM and ANN, two methodologies were then compared for their predictive capabilities. The results showed that the ANN model is much more accurate in prediction as compared to the RSM.
基金Supported by Scientific and Technological Planning Project of Pu'er City of Yunnan Province(2012kj007)
文摘[Objectives] To increase the survival rate of tissue culture seedlings of Dendrobium officinale,and optimize the conditions of rooting medium by the response surface methodology( RSM). [Methods]The effects of 6-BA concentration,NAA concentration,potato amount and the amount of mashed banana on the growth of seedlings were determined by single factor experiment and were analyzed by Box-Behnken design and response surface methodology. [Results]The optimal culture conditions: rooting medium 1/2 MS + 6-BA 0. 24 mg/L + mashed banana 87. 63 g/L + potato 89. 30 g/L + NAA 0. 52 mg/L + sucrose 20. 0 g/L + activated carbon 4. 0 g/L + agar 7. 0 g/L,p H 5. 8,and light intensity 2 000 Lx. [Conclusions]The model established by response surface methodology has a good predictability and could be used to optimize the conditions of tissue culture and rooting medium of D. officinale.
基金financially supported by the National Science Foundation of China (No. 21376229)the Science and Technology Development Plan of Shanxi Province (No. 20130321035-02)
文摘By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction method. In order to determine the operating conditions of the system, the effects of the concentration of Fe3+ ions(ranging from 0.1 to 0.2 mol/L), the liquid-gas volume ratio(ranging from 15 to 25 L/m3) and the high gravity factor(ranging from 36 to 126) on the removal of H2 S were studied by means of the Box-Behnken design(BBD) under response surface methodology(RSM). The overall results have demonstrated that the BBD with an experimental design can be used effectively in the optimization of the desulfurization process. The optimal conditions based on both individualized and combined responses(at a Fe3+ ion concentration of 0.16 mol/L, a liquid-gas volume ratio of 20.67 L/m3 and a high gravity factor of 87) were found. Under this optimum condition, the desulfurization efficiency could reach 98.81% when the H2 S concentration was 7 g/m3 in APG. In this work, the sulfur product was analyzed by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the energy dispersive X-ray spectrometer(EDX). The results of analysis show that the sulfur is made of the high-purity orthorhombic crystals, which are advantageous to environmental conservation.
基金Supported by Project of Department of Education of Liaoning Province(L2017lkyfwdf-05)Natural Science Foundation Project of Department of Education of Liaoning Province(20180551223&2016003003)
文摘[Objectives] To optimize the extraction process and determine the total triterpenoids from Semen Trichosanthis.[Methods]The Box-behnken response surface methodology was applied to optimize the extraction conditions of total triterpenoids in Semen Trichosanthis.And the spectrophotometry was used to determine the content of total triterpenoids in Semen Trichosanthis.[Results] The optimal extraction conditions were solid to liquid ratio of 40∶ 1,ultrasonic time of 20 min,and ultrasonic power of 100 W.Under these conditions,the content of total triterpenoids in Semen Trichosanthis was significantly different among the 10 production areas,among which the No.9 production area(Anhui 1) had the highest total triterpenoids content of 45.71 mg/g,while No.7 production area(Shandong) had the lowest total triterpenoids content of 15.22 mg/g.[Conclusions]The Box-behnken response surface methodology is reliable for the extraction of total triterpenoids in Semen Trichosanthis,and the spectrophotometry is proper for determining the content of total triterpenoids in Semen Trichosanthis.There are large differences in the content of total triterpenoids in Semen Trichosanthis produced in different areas.
文摘The Adansonia digitate L. known as Baobab is the only species present in West Africa and grows wild. All parts of the plant are used by humans. In Senegal, baobab pulp is widely consumed;it is used as raw material in small and medium enterprises (SMEs) for making juices, concentrates, jams, powder. Drinks or juices from baobab are highly appreciated by consumers;however rapid fermentation can happen even after pasteurization that can shorten their shelf-life. A Doehlert experimental design was used to find a good scale of heat treatment ensuring a proper conservation of baobab juice. Results of the experimental design showed that a heat treatment of 80°C for 10 min gives a baobab juice with good sanitary quality that meets the international standards.
基金financially supported by the Key Research Project of Shandong Province (No. 2017CXGC 1004)the National Natural Science Foundation of China (No. 21878178)+1 种基金the Shandong Science and Technology Development Plan (No. 2018GGX107001)the Young Tai- shan Scholars Program of Shandong Province
文摘In this work,response surface methodology(RSM)was employed to model and optimize electrodialysis process for mercury(Hg(II))removal from seaweed extracts.Box-Behnken design(BBD)was utilized to evaluate the effects and the interaction of influential variables such as operating voltage,influent flow rate,initial concentration of Hg(II)on the removal rate of Hg(II).The developed regression model for removal rate response was validated by analysis of variance,and presented a good agreement of the experimental data with the quadratic equation with high value coefficient of determination value(R2=0.9913,RAdj 2=0.9678).The optimum operating parameters were determined as 7.17V operating voltage,72.54L h−1 influent flow rate and 5.04mgL−1 initial concentration of mercury.Hg(II)removal rate of 76.45%was acquired under the optimum conditions,which showed good agreement with model-predicted(75.81%)result.The results revealed that electrodialysis can be considered as a promising strategy for removal of Hg(II)from seaweed extracts.
基金2018 Undergraduate Innovation and Entrepreneurship Training Program of Huanggang Normal University(201810514045)High-level Cultivation Project of Huanggang Normal University(201816703)。
文摘[Objectives]This study was conducted to screen best process parameters for making Foshou yam and honey can.[Methods]The Foshou yam produced from Wuxue was used as a raw material to prepare Foshou yam and honey nutritional can by combining Foshou yam with honey through screening,pre-cooking,filling,exhausting,cooling and other technical processes.The optimum technology parameter of Foshou yam and honey nutritional can was studied through single factor tests and response surface optimization.[Results]The optimum technical parameters of Foshou yam and honey nutritional can were citric acid concentration 0.1%,amount of edible salt 0.1%,cooking time 14 min and honey concentration 26%.Under these conditions,the final sensory score was 90.20.The prepared can was not only rich in nutrition,but also had good flavor and taste.[Conclusions]This study provides reference for the development and utilization of Foshou yam and the research and development of functional food.
文摘In this research,activated carbon from mangosteen peel has been synthesized using sulfuric acid as an activator.The adsorption performance of the activated carbon was optimized using malachite green dye as absorbate.Mala-chite green dye waste is a toxic and non-biodegradable material that damages the environment.Optimization of adsorption processes was carried out using Response Surface Methodology(RSM)with a Box-Behnken Design(BBD).The synthesized activated carbon was characterized using FTIR and SEM instruments.The FTIR spectra confirmed the presence of a sulfonate group(-SO_(3)H)in the activated carbon,indicating that the activation pro-cess using sulfuric acid was successful.SEM characterization shows that activated carbon has porous morphology.Optimization was carried out for three adsorption parameters,namely contact time(20,60,and 120 min),adsor-bent mass(0.005,0.025,and 0.05 g),and initial concentration of malachite green solution(5,50,and 100 mg·L^(-1)).The concentration of the malachite green solution was determined using a UV-Vis spectrophotometer at the max-imum wavelength of malachite green,618 nm.The optimum of malachite green adsorption using mangosteen peel activated carbon was obtained at a contact time of 80 min,an adsorbent mass of 0.032 g,and malachite green initial concentration of 25 mg·L^(-1),with a maximum removal percentage and maximum adsorption capacity of 93.66%and 19.345 mg·g^(-1),respectively.
文摘In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion method,a green alternative to the traditional preparative routes.The catalyst was characterized using XRD,FTIR,SEM,EDX,XPS and TEM techniques.The synergistic effect of the composite CeO2/g-C3 N4/Ag was tested for catalytic reduction of 4-nitrophenol in the prese nce of sodium borohydride.The reaction was carried out at room tempe rature without any light source or exte rnal stirring.The individual and combined effects of four parameters,viz.,concentration of 4-NP,amount of catalyst,amount of NaBH4 and time for the reduction of reduction 4-NP were investigated using Box-Behnken design of response surface methodology(RSM).This statistical model was used to optimize the reaction conditions for maximum reduction of 4-NP.The optimum conditions for the reduction reaction are found to be 0.01 mmol/L 4-NP,15 mg catalyst,20 mg NaBH4 and 13.7 min time interval.
文摘The adsorption of Pb(II)on silica gel synthesized from chemical glass bottle waste has been studied.The effect of independent variables(adsorbent dose,initial concentration of Pb(II),contact time,and pH)on the Pb(II)removal from water was evaluated and optimized using the Response Surface Methodology(RSM).Under optimized conditions(adsorbent dose:20 mg;contact time:30 min;initial Pb(II)concentration:120 mg.L^(−1);and pH:8),the removal of Pb(II)was 99.77%.The adsorption equilibrium data obtained from the batch experiment were investigated using different isotherm models.The Langmuir isotherm model fits the experimental data.This shows that the surface of the silica gel synthesized from chemical bottles waste was covered by a Pb(II)monolayer.XRF analysis showed that the synthesized silica gel had a SiO_(2) content of 75.63%.Amorphous silica was observed from XRD analysis.SEM-EDX characterization showed that Pb was adsorbed on the silica gel surface.SEM analysis showed that silica gel has irregular particles with a surface area of 297.08 m2.g^(−1) with a pore radius of 15.74 nm calculated from BET analysis.
文摘This work focuses on the updating-based identification of the three-dimensional orthotropic elastic behavior of a thin carbon fiber reinforced plastic multilayer composite plate. This consists in identifying the engineering constants that minimize the relative deviations between the first eight experimental and three-dimensional finite element frequencies of the vibrating free plate. For this purpose, a multi-objective optimization procedure is applied;it exploits a Particle Swarm Optimizer algorithm (PSO) that is coupled to a metamodeling by the new response surfaces method procedure (NRSMP);the latter is based on numerical design experiments. The conducted sensitivity analyses indicate that the four engineering constants of the two-dimensional elasticity are the most influent.