Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficie...Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficiency of medical diagnosis.And with the wide application of the Internet of Things and Big Data in the medical field,medical Big Data is increasing in geometric magnitude resulting in cloud service overload,insufficient storage,communication delay,and network congestion.In order to solve these medical and network problems,a medical big-data-oriented fog computing architec-ture and BP algorithm application are proposed,and its structural advantages and characteristics are studied.This architecture enables the medical Big Data generated by medical edge devices and the existing data in the cloud service center to calculate,compare and analyze the fog node through the Internet of Things.The diagnosis results are designed to reduce the business processing delay and improve the diagnosis effect.Considering the weak computing of each edge device,the artificial intelligence BP neural network algorithm is used in the core computing model of the medical diagnosis system to improve the system computing power,enhance the medical intelligence-aided decision-making,and improve the clinical diagnosis and treatment efficiency.In the application process,combined with the characteristics of medical Big Data technology,through fog architecture design and Big Data technology integration,we could research the processing and analysis of heterogeneous data of the medical diagnosis system in the context of the Internet of Things.The results are promising:The medical platform network is smooth,the data storage space is sufficient,the data processing and analysis speed is fast,the diagnosis effect is remarkable,and it is a good assistant to doctors’treatment effect.It not only effectively solves the problem of low clinical diagnosis,treatment efficiency and quality,but also reduces the waiting time of patients,effectively solves the contradiction between doctors and patients,and improves the medical service quality and management level.展开更多
Artificial neural network is a new approach to pattern recognition and classification. The model of multilayer perceptron (MLP) and back-propagation (BP) is used to train the algorithm in the artificial neural net...Artificial neural network is a new approach to pattern recognition and classification. The model of multilayer perceptron (MLP) and back-propagation (BP) is used to train the algorithm in the artificial neural network. An improved fast algorithm of the BP network was presented, which adopts a singular value decomposition (SVD) and a generalized inverse matrix. It not only increases the speed of network learning but also achieves a satisfying precision. The simulation and experiment results show the effect of improvement of BP algorithm on the classification of the surface defects of steel plate.展开更多
Up to now, some technology of neural networks are developed to solve the non-linearity of researched objects and to implement the adaptive control in many engineering fields, and some good results were achieved. Thoug...Up to now, some technology of neural networks are developed to solve the non-linearity of researched objects and to implement the adaptive control in many engineering fields, and some good results were achieved. Though it puts some questions over to design application structure with neural networks, it is really unknowable about the study mechanism of those. But, the importance of study ratio is widely realized by many scientists now, and some methods on the modification of that are provided. The main subject is how to improve the stability and how to increase the convergent rate of networks by defining a good form of the study ratio. Here a new algorithm named LDBP (least disturbance BP algorithm) is proposed to calculate the ratio online according to the output errors, the weights of network and the input values. The algorithm is applied to the control of an autonomous underwater vehicle designed by HEU. The experimental results show that the algorithm has good performance and the controller designed based on it is fine.展开更多
Artificial neural networks have been widely used to predict the mechanical properties of alloys in material research. This study aims to investigate the implicit relationship between the compositions and mechanical pr...Artificial neural networks have been widely used to predict the mechanical properties of alloys in material research. This study aims to investigate the implicit relationship between the compositions and mechanical properties of as-cast Mg-Li-AI alloys. Based on the experimental collection of the tensile strength and the elongation of representative Mg-Li-AI alloys, a momentum back-propagation (BP) neural network with a single hidden layer was established. Particle swarm optimization (PSO) was applied to optimize the BP model. In the neural network, the input variables were the contents of Mg, Li and AI, and the output variables were the tensile strength and the elongation. The results show that the proposed PSO-BP model can describe the quantitative relationship between the Mg-Li-AI alloy's composition and its mechanical properties. It is possible that the mechanical properties to be predicted without experiment by inputting the alloy composition into the trained network model. The prediction of the influence of AI addition on the mechanical properties of as-cast Mg-Li-AI alloys is consistent with the related research results.展开更多
The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to eff...The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters.展开更多
In this paper potential seismic sources in coastal region of South China are identified by integration of genetic algorithm (GA) and back propagation (BP algorithm). GA is used for finding the best parameter combinati...In this paper potential seismic sources in coastal region of South China are identified by integration of genetic algorithm (GA) and back propagation (BP algorithm). GA is used for finding the best parameter combination rapidly in an infinite solution space for artificial neural networks (ANN). The results show that the distribution of potential seismic sources with different upper magnitude demarcated by this classifier is mostly satisfied the intrinsic relationship between seismic environment and earthquake occurrence, with less effect from subjective judgment of human being.展开更多
Back propagation (BP) algorithm is a very useful algorithm in many areas, but its leaning process is a very complicated non linear convergence process, in which, chaos often happens, and slow convergence speed and loc...Back propagation (BP) algorithm is a very useful algorithm in many areas, but its leaning process is a very complicated non linear convergence process, in which, chaos often happens, and slow convergence speed and local least often make it difficult for the non experts to use it widely, and an improved BP (IBP) algorithm is therefore suggested to expedite the convergence speed. The algorithm can judge local least and take some steps automatically to jump out from the local least. Furthermore, this algorithm introduces the expert knowledge base. An IBP based agile and current neural network (NN) constructed tool is designed. An initial NN can be constructed automatically using an expert knowledge base. And an Aitken’s Δ 2 process method is used to expedite the convergent speed for NN. Besides, the method of changing the parameter of Sigmoid function and increasing the hidden node is used to bring surge for NN to jump out from the local展开更多
The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines...The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication---the highest prediction rate 75.65%,the average prediction rate 65.04%.展开更多
The capability of multilayer perceptrons(MLPs)for approximating continuous functions with arbitrary accuracy has been demonstrated in the past decades.Back propagation(BP)algorithm is the most popular learning algorit...The capability of multilayer perceptrons(MLPs)for approximating continuous functions with arbitrary accuracy has been demonstrated in the past decades.Back propagation(BP)algorithm is the most popular learning algorithm for training of MLPs.In this paper,a simple iteration formula is used to select the leaming rate for each cycle of training procedure,and a convergence result is presented for the BP algo- rithm for training MLP with a hidden layer and a linear output unit.The monotonicity of the error function is also guaranteed during the training iteration.展开更多
基金supported by 2020 Foshan Science and Technology Project(Numbering:2020001005356),Baoling Qin received the grant.
文摘Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficiency of medical diagnosis.And with the wide application of the Internet of Things and Big Data in the medical field,medical Big Data is increasing in geometric magnitude resulting in cloud service overload,insufficient storage,communication delay,and network congestion.In order to solve these medical and network problems,a medical big-data-oriented fog computing architec-ture and BP algorithm application are proposed,and its structural advantages and characteristics are studied.This architecture enables the medical Big Data generated by medical edge devices and the existing data in the cloud service center to calculate,compare and analyze the fog node through the Internet of Things.The diagnosis results are designed to reduce the business processing delay and improve the diagnosis effect.Considering the weak computing of each edge device,the artificial intelligence BP neural network algorithm is used in the core computing model of the medical diagnosis system to improve the system computing power,enhance the medical intelligence-aided decision-making,and improve the clinical diagnosis and treatment efficiency.In the application process,combined with the characteristics of medical Big Data technology,through fog architecture design and Big Data technology integration,we could research the processing and analysis of heterogeneous data of the medical diagnosis system in the context of the Internet of Things.The results are promising:The medical platform network is smooth,the data storage space is sufficient,the data processing and analysis speed is fast,the diagnosis effect is remarkable,and it is a good assistant to doctors’treatment effect.It not only effectively solves the problem of low clinical diagnosis,treatment efficiency and quality,but also reduces the waiting time of patients,effectively solves the contradiction between doctors and patients,and improves the medical service quality and management level.
基金Item Sponsored by National Natural Science Foundation of China (60277029)
文摘Artificial neural network is a new approach to pattern recognition and classification. The model of multilayer perceptron (MLP) and back-propagation (BP) is used to train the algorithm in the artificial neural network. An improved fast algorithm of the BP network was presented, which adopts a singular value decomposition (SVD) and a generalized inverse matrix. It not only increases the speed of network learning but also achieves a satisfying precision. The simulation and experiment results show the effect of improvement of BP algorithm on the classification of the surface defects of steel plate.
文摘Up to now, some technology of neural networks are developed to solve the non-linearity of researched objects and to implement the adaptive control in many engineering fields, and some good results were achieved. Though it puts some questions over to design application structure with neural networks, it is really unknowable about the study mechanism of those. But, the importance of study ratio is widely realized by many scientists now, and some methods on the modification of that are provided. The main subject is how to improve the stability and how to increase the convergent rate of networks by defining a good form of the study ratio. Here a new algorithm named LDBP (least disturbance BP algorithm) is proposed to calculate the ratio online according to the output errors, the weights of network and the input values. The algorithm is applied to the control of an autonomous underwater vehicle designed by HEU. The experimental results show that the algorithm has good performance and the controller designed based on it is fine.
基金supported by the Program of New Century Excellent Talents of the Ministry of Education of China(NCET-08-0080)the National High Technology Research and Development Program("863"Program)of China(2009AA03Z525)+1 种基金the Fundamental Research Funds for the Central Universities(DUT11ZD115)the Science and Technology Fund of Dalian City(2009J21DW003)
文摘Artificial neural networks have been widely used to predict the mechanical properties of alloys in material research. This study aims to investigate the implicit relationship between the compositions and mechanical properties of as-cast Mg-Li-AI alloys. Based on the experimental collection of the tensile strength and the elongation of representative Mg-Li-AI alloys, a momentum back-propagation (BP) neural network with a single hidden layer was established. Particle swarm optimization (PSO) was applied to optimize the BP model. In the neural network, the input variables were the contents of Mg, Li and AI, and the output variables were the tensile strength and the elongation. The results show that the proposed PSO-BP model can describe the quantitative relationship between the Mg-Li-AI alloy's composition and its mechanical properties. It is possible that the mechanical properties to be predicted without experiment by inputting the alloy composition into the trained network model. The prediction of the influence of AI addition on the mechanical properties of as-cast Mg-Li-AI alloys is consistent with the related research results.
文摘The significant advantage of the complex resistivity method is to reflect the abnormal body through multi-parameters, but its inversion parameters are more than the resistivity tomography method. Therefore, how to effectively invert these spectral parameters has become the focused area of the complex resistivity inversion. An optimized BP neural network (BPNN) approach based on Quantum Particle Swarm Optimization (QPSO) algorithm was presented, which was able to improve global search ability for complex resistivity multi-parameter nonlinear inversion. In the proposed method, the nonlinear weight adjustment strategy and mutation operator were used to enhance the optimization ability of QPSO algorithm. Implementation of proposed QPSO-BPNN was given, the network had 56 hidden neurons in two hidden layers (the first hidden layer has 46 neurons and the second hidden layer has 10 neurons) and it was trained on 48 datasets and tested on another 5 synthetic datasets. The training and test results show that BP neural network optimized by the QPSO algorithm performs better than the BP neural network without initial optimization on the inversion training and test models, and the mean square error distribution is better. At the same time, a double polarized anomalous bodies model was also used to verify the feasibility and effectiveness of the proposed method, the inversion results show that the QPSO-BP algorithm inversion clearly characterizes the anomalous boundaries and is closer to the values of the parameters.
文摘In this paper potential seismic sources in coastal region of South China are identified by integration of genetic algorithm (GA) and back propagation (BP algorithm). GA is used for finding the best parameter combination rapidly in an infinite solution space for artificial neural networks (ANN). The results show that the distribution of potential seismic sources with different upper magnitude demarcated by this classifier is mostly satisfied the intrinsic relationship between seismic environment and earthquake occurrence, with less effect from subjective judgment of human being.
文摘Back propagation (BP) algorithm is a very useful algorithm in many areas, but its leaning process is a very complicated non linear convergence process, in which, chaos often happens, and slow convergence speed and local least often make it difficult for the non experts to use it widely, and an improved BP (IBP) algorithm is therefore suggested to expedite the convergence speed. The algorithm can judge local least and take some steps automatically to jump out from the local least. Furthermore, this algorithm introduces the expert knowledge base. An IBP based agile and current neural network (NN) constructed tool is designed. An initial NN can be constructed automatically using an expert knowledge base. And an Aitken’s Δ 2 process method is used to expedite the convergent speed for NN. Besides, the method of changing the parameter of Sigmoid function and increasing the hidden node is used to bring surge for NN to jump out from the local
文摘The advantages and disadvantages of genetic algorithm and BP algorithm are introduced. A neural network based on GA-BP algorithm is proposed and applied in the prediction of protein secondary structure, which combines the advantages of BP and GA. The prediction and training on the neural network are made respectively based on 4 structure classifications of protein so as to get higher rate of predication---the highest prediction rate 75.65%,the average prediction rate 65.04%.
基金This research was supported by the National Natural Science Foundation of China (10471017).
文摘The capability of multilayer perceptrons(MLPs)for approximating continuous functions with arbitrary accuracy has been demonstrated in the past decades.Back propagation(BP)algorithm is the most popular learning algorithm for training of MLPs.In this paper,a simple iteration formula is used to select the leaming rate for each cycle of training procedure,and a convergence result is presented for the BP algo- rithm for training MLP with a hidden layer and a linear output unit.The monotonicity of the error function is also guaranteed during the training iteration.