A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow...A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.展开更多
In this study, the Solidworks was used as pre-processor, which performed the three- dimensional solid construction and automatic enmeshment. The COSMOS was adopted as post- processor to display the temperature distrib...In this study, the Solidworks was used as pre-processor, which performed the three- dimensional solid construction and automatic enmeshment. The COSMOS was adopted as post- processor to display the temperature distribution and further to simulate the thermal stress distribution of dies. A software package for three-dimensional temperature fields of complicated die casting and its dies was developed and the temperature distributions of a fan cover casting were simulated by the software.展开更多
High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a ...High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a AlSi10 MnMg alloy thin-wall longitudinal load-bearing beam produced by HPDC, different gating systems were designed and simulated by software Flow-3D to evaluate the entrapped air. Simulation results showed that when the beam is produced by the original designed gating system with a middle ingate, there exist obvious air entrapments in the critical area; the volume of air entrapment was reduced by replacing the middle ingate to an overflow well, and the filling of molten metal became more stable. When the middle ingate was removed for further improvement, the volume of air entrapment was decreased drastically. The parts with glossy surface and good microstructure have been successfully produced by using the final optimized gating system based on simulation results.展开更多
Although the shell mould casting process has a wide range of application in many fields,the prediction of casting defects is still a problem.In the present work,a typical leaf spring bracket casting of ZG310-570 was f...Although the shell mould casting process has a wide range of application in many fields,the prediction of casting defects is still a problem.In the present work,a typical leaf spring bracket casting of ZG310-570 was fabricated by shell mold casting.The finite element model and ProCAST software were utilized for simulating the filling and solidification processes of the casting;and the formation mechanism of the gas pore,and shrinkage porosity defects were analyzed.The results indicate that the gas pore and shrinkage porosity defects are formed due to air entrapment,insufficient feeding and non-sequential solidification.Subsequently,through changing the position of risers,adding a connecting channel between the risers,and setting blind risers at the U-shaped brackets,an optimized gating and feeding system was established to improve the quality of the casting.After optimization,the gas pore and shrinkage porosity defects of the leaf spring bracket casting are effectively eliminated.The experiment results with the optimized casting process are in good agreement with the numerical simulation,which verifies the validity of the finite element model in the shell mould casting.展开更多
Porthole die extrusion method is used to produce hollow aluminum profile. Due to the complexity of the porthole die structure and the material flow, it is very difficult to get ideal profile products with the firstly ...Porthole die extrusion method is used to produce hollow aluminum profile. Due to the complexity of the porthole die structure and the material flow, it is very difficult to get ideal profile products with the firstly designed die structure. Finite volume numerical simulation was used to analyze the extrusion process of a hollow profile with porthole die and the problem of non-uniform material flow was found. Optimization was made to the originally designed die to solve the problem. Lower load, reasonable seaming location and even extruded forepart with uniform material flow in the optimized die extrusion were obtained. Guidelines to porthole die design were given and it is also concluded that finite volume method with Eulerian description avoids mesh regeneration and is suitable to numerical simulation of severe deformation processes, such as profile extrusion.展开更多
Traditionally a rotary forging process is a kind of metal forming method where a conic upper die, whose axis is deviated an angle from the axis of machine, forges a billet continuously and partially to finish the whol...Traditionally a rotary forging process is a kind of metal forming method where a conic upper die, whose axis is deviated an angle from the axis of machine, forges a billet continuously and partially to finish the whole deformation. For the rotary forging process simulation, more researches were focused on simulating the simple stage forming process with axisymmetric part geometry. Whereas in this paper, the upper die is not cone-shaped, and the billet is non-axisymmetric. So the movement of the punch is much more complicated than ever. The 3D FEM simulation models for the preforming & final forming processes are set up aider carefully studying the complicated movement pattern. Deform-3D is used to simulate the material flow, and the boundary nodal resisting forces calculated by the final stage process simulation is used to analyze the final forming die strength. The CAE analysis of the die shows that the design of the final forming die is not reasonable with lower pre-stress which is easy to crack at the critical corners. An optimum die design is also provided with higher pre-stress, and verified by CAE analysis.展开更多
The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer...The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer phenomenon during the HPDC process has been established and parallel computation technique was used for the mold filling simulation of the process. The laminar flow characteristics of the LPDC process were studied and a simplified model for the mold filling process of wheel castings has been developed. For the solidification simulation under pressure conditions, the cyclic characteristics and the complicated boundary conditions were considered and techniques to improve the computational efficiency are discussed. A new criterion for predicting shrinkage porosity of Al alloy under low pressure condition has been developed in the solidification simulation process.展开更多
The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the dist...The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the distribution of liquid fraction,temperature field and solidification pattern of castings were studied.The potential shrinkage defects were predicted to be formed at the rim/spoke junctions,which is in consistence with the X-ray detection result.The distribution pattern of the defects has also been studied.A solution towards reducing such defects has been presented.The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold.Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.展开更多
Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite d...Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.展开更多
In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile desig...In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.展开更多
The gating system and the overflow system were designed according to the casting structure during high pressure die casting(HPDC) process. The simulation was carried out by ProCAST software to visualize the injection ...The gating system and the overflow system were designed according to the casting structure during high pressure die casting(HPDC) process. The simulation was carried out by ProCAST software to visualize the injection chamber pre-crystallization and the flow of molten metal. The main work is to research four die casting process parameters, i.e. injection temperature, low-pressure velocity, high-and low-pressure velocity’s switching position, and high-pressure velocity. Experimental results show that the higher injection temperature and lowpressure velocity can mitigate the pre-crystallization of the injection chamber. However, when the low-pressure velocity exceeds 0.2 m·s-1, the air entrapment in the chamber occurs. Besides, when the high-pressure velocity is greater than 2.5 m·s-1, the overflow channel at the final filling position is covered by the liquid metal too early. Finally, the injection temperature of 650 °C, the low-pressure velocity of 0.2 m·s-1, the high-and low-pressure velocity’s switching position of 320 mm and the high-pressure velocity of 2 m·s-1 are obtained as the optimal parameters by the software simulation, which has been verified by actual production.展开更多
After many years of development, die casting technology of metallic materials has been matured. In this paper,the lower-support and its injecting system were created with commercial software. And then the simulation s...After many years of development, die casting technology of metallic materials has been matured. In this paper,the lower-support and its injecting system were created with commercial software. And then the simulation softwareFLOW3D was applied to study the flow behavior of the melt during injection filling process. Both temperature field anddefect distribution were simulated. Based on these results, the better injecting system with two additional overflows wasadopted.展开更多
This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss h...This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss how to prevent gas entrapment and propose new methods.展开更多
High-speed injection die casting is an efficient manufacturing technology for upgrading aluminum die-cast products.However,deficiencies(such as die damage in early period)due to larger load on the molding die compared...High-speed injection die casting is an efficient manufacturing technology for upgrading aluminum die-cast products.However,deficiencies(such as die damage in early period)due to larger load on the molding die compared with conventional technology have brought new challenges.In this study,the cause of damage generated in super high-speed injection was investigated by the combination of experimental observation of the dies and CAE simulation(e.g.die temperature analysis,flow analysis and thermal stress analysis).The potential countermeasures to solve the above problems were also proposed.展开更多
The morphology and content of the divorced eutectic in the microstructure of high pressure die casting(HPDC) magnesium alloy have a great influence on the final performance of castings. Based on the previous work conc...The morphology and content of the divorced eutectic in the microstructure of high pressure die casting(HPDC) magnesium alloy have a great influence on the final performance of castings. Based on the previous work concerning simulation of the nucleation and dendritic growth of primary α-Mg during the solidification of magnesium alloy under HPDC process, an extension was made to the formerly established CA(Cellular Automaton) model with the purpose of modeling the nucleation and growth of Mg-Al eutectic. With a temperature field and solute field obtained during simulation of the primary α-Mg dendrites as the initial condition of the modified CA model, modeling of the Mg-Al eutectic with a divorced morphology was achieved. Moreover, the simulated results were in accordance with the experimental ones regarding the distribution and content of the divorced eutectic. Taking a "cover-plate" die casting with AM60 magnesium alloy as an example, the rapid solidification with a high cooling rate at the surface layer of the casting led to a fine and uniform grain size of primary α-Mg, while the divorced eutectic at the grain boundary revealed a more dispersed and granular morphology. Islands of divorced eutectic were observed at the central region of the casting, due to the existence of ESCs(Externally Solidified Crystals) which contributed to a coarse and non-uniform grain size of primary α-Mg. The volume percentage of the eutectic β-Mg_(17)Al_(12) phase is about 2%-6% in the die casting as a whole. The numerical model established in this study is of great significance to the study of the divorced eutectic in the microstructure of die cast magnesium alloy.展开更多
The theoretical model of the flow field of the dual slot die in melt blowing process is founded. The model is solved numerically with finite difference method. The distributions of the air velocity component in x dire...The theoretical model of the flow field of the dual slot die in melt blowing process is founded. The model is solved numerically with finite difference method. The distributions of the air velocity component in x direction along x-axis and y-axis and the air temperature distributions along x-axis and y-axis are obtained via numerical computation. The computation results coincide with the experimental data given by Harphain and Shambaugh. The distributions of the air velocity and air temperature are introduced into the air drag model of melt blowing. The model prediction of the fiber diameter agrees with the experimental data well.展开更多
Based on the car front-wheel-hub forging forming process of numerical simulation, the temperature gradient expression of forging model cavity near the surface layer was got ten, which illustrates that the forging temp...Based on the car front-wheel-hub forging forming process of numerical simulation, the temperature gradient expression of forging model cavity near the surface layer was got ten, which illustrates that the forging temperature gradient is related to forging die materials thermal conductivity, specific heat and impact speed, and the correlation coefficient is 0.97. Under the different thermal conductivity, heat capacity and forging speed, the temperature gradient was compared with each other. The paper obtained the relevant laws, which illustrates the temperature gradient relates to these three parameters in a sequence of thermal conductivity 〉 impact speed〉 specific heat capacity. To reduce thermal stress in the near-surface layer of hot forging cavity, the material with greater thermal conductivity coefficient and specific heat capacity should be used.展开更多
This study is subject to the finite element and abd uc tive network method application in the multi-cavity die. In order to select the optimal cooling system parameters to minimize the warp of a die-casting die, t he ...This study is subject to the finite element and abd uc tive network method application in the multi-cavity die. In order to select the optimal cooling system parameters to minimize the warp of a die-casting die, t he Taguchi’s method and the abductive network are used. These methods are appli ed to create an efficient model with functional nodes for the considered problem . Once the cooling system parameters are developed, this network can be used to predict the warp for the die-casting die accurately. A simulated annealing (SA) optimization algorithm with a performance index is then applied to the neur al network for searching the optimal cooling system parameters, and obtain rathe r satisfactory result as compared with the corresponding finite element veri fication.展开更多
文摘A 3-D mathematical model considering turbulence phenomena has been established based on a computational fluid dynamics technique, so called 3-D SOLA-VOF (Solution Algorithm-Volume of Fluid), to simulate the fluid flow of mold filling process of die casting. In addition, the mathematical model for simulating the heat transfer in die casting process has also been established. The computation program has been developed by the authors with the finite difference method (FDM) recently. As verification, the mold filling process of a S-shaped die casting has been simulated and the simulation results coincide with that of the benchmark test. Finally, as a practical application, the gating design of a motorcycle component was modified by the mold filling simulation and the dies design of another motorcycle component was optimized by the heat transfer simulation. All the optimized designs were verified by the production practice.
文摘In this study, the Solidworks was used as pre-processor, which performed the three- dimensional solid construction and automatic enmeshment. The COSMOS was adopted as post- processor to display the temperature distribution and further to simulate the thermal stress distribution of dies. A software package for three-dimensional temperature fields of complicated die casting and its dies was developed and the temperature distributions of a fan cover casting were simulated by the software.
基金supported by the Major Project of NSFC(51690161)the Student Innovation Program Major Project of Northeastern University(ZD1708)
文摘High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a AlSi10 MnMg alloy thin-wall longitudinal load-bearing beam produced by HPDC, different gating systems were designed and simulated by software Flow-3D to evaluate the entrapped air. Simulation results showed that when the beam is produced by the original designed gating system with a middle ingate, there exist obvious air entrapments in the critical area; the volume of air entrapment was reduced by replacing the middle ingate to an overflow well, and the filling of molten metal became more stable. When the middle ingate was removed for further improvement, the volume of air entrapment was decreased drastically. The parts with glossy surface and good microstructure have been successfully produced by using the final optimized gating system based on simulation results.
基金financially supported by the Major Science and Technology Projects in Anhui Province (No. 18030901097)the Natural Science Foundation of Anhui Province (No.1908085QE197)the Fundamental Research Funds for the Central Universities (JZ2018HGBZ0133, JZ2019HGTA0043)
文摘Although the shell mould casting process has a wide range of application in many fields,the prediction of casting defects is still a problem.In the present work,a typical leaf spring bracket casting of ZG310-570 was fabricated by shell mold casting.The finite element model and ProCAST software were utilized for simulating the filling and solidification processes of the casting;and the formation mechanism of the gas pore,and shrinkage porosity defects were analyzed.The results indicate that the gas pore and shrinkage porosity defects are formed due to air entrapment,insufficient feeding and non-sequential solidification.Subsequently,through changing the position of risers,adding a connecting channel between the risers,and setting blind risers at the U-shaped brackets,an optimized gating and feeding system was established to improve the quality of the casting.After optimization,the gas pore and shrinkage porosity defects of the leaf spring bracket casting are effectively eliminated.The experiment results with the optimized casting process are in good agreement with the numerical simulation,which verifies the validity of the finite element model in the shell mould casting.
基金Project(50425517) supported by National Science Foundation for Distinguished Young Scholars of ChinaProject(50375087) supported by the Natural Science Foundation of ChinaProject(Q2004f01) supported by Natural Science Foundation of Shandong Province, China
文摘Porthole die extrusion method is used to produce hollow aluminum profile. Due to the complexity of the porthole die structure and the material flow, it is very difficult to get ideal profile products with the firstly designed die structure. Finite volume numerical simulation was used to analyze the extrusion process of a hollow profile with porthole die and the problem of non-uniform material flow was found. Optimization was made to the originally designed die to solve the problem. Lower load, reasonable seaming location and even extruded forepart with uniform material flow in the optimized die extrusion were obtained. Guidelines to porthole die design were given and it is also concluded that finite volume method with Eulerian description avoids mesh regeneration and is suitable to numerical simulation of severe deformation processes, such as profile extrusion.
文摘Traditionally a rotary forging process is a kind of metal forming method where a conic upper die, whose axis is deviated an angle from the axis of machine, forges a billet continuously and partially to finish the whole deformation. For the rotary forging process simulation, more researches were focused on simulating the simple stage forming process with axisymmetric part geometry. Whereas in this paper, the upper die is not cone-shaped, and the billet is non-axisymmetric. So the movement of the punch is much more complicated than ever. The 3D FEM simulation models for the preforming & final forming processes are set up aider carefully studying the complicated movement pattern. Deform-3D is used to simulate the material flow, and the boundary nodal resisting forces calculated by the final stage process simulation is used to analyze the final forming die strength. The CAE analysis of the die shows that the design of the final forming die is not reasonable with lower pre-stress which is easy to crack at the critical corners. An optimum die design is also provided with higher pre-stress, and verified by CAE analysis.
基金The work was financially supported by the Significant Fundamental Research Development & Planning of China (G2000067208-3) the Significant Project of the National Natural Science Foundation of China (59990470-3)and the internal research fund of Tsing
文摘The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer phenomenon during the HPDC process has been established and parallel computation technique was used for the mold filling simulation of the process. The laminar flow characteristics of the LPDC process were studied and a simplified model for the mold filling process of wheel castings has been developed. For the solidification simulation under pressure conditions, the cyclic characteristics and the complicated boundary conditions were considered and techniques to improve the computational efficiency are discussed. A new criterion for predicting shrinkage porosity of Al alloy under low pressure condition has been developed in the solidification simulation process.
基金funded by the Innovation Fund for Outstanding Scholar of Henan Province(No.0621000700)
文摘The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the distribution of liquid fraction,temperature field and solidification pattern of castings were studied.The potential shrinkage defects were predicted to be formed at the rim/spoke junctions,which is in consistence with the X-ray detection result.The distribution pattern of the defects has also been studied.A solution towards reducing such defects has been presented.The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold.Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.
文摘Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.
基金Project (2008ZE53042) supported by National Aerospace Science Foundation of China
文摘In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0301003)
文摘The gating system and the overflow system were designed according to the casting structure during high pressure die casting(HPDC) process. The simulation was carried out by ProCAST software to visualize the injection chamber pre-crystallization and the flow of molten metal. The main work is to research four die casting process parameters, i.e. injection temperature, low-pressure velocity, high-and low-pressure velocity’s switching position, and high-pressure velocity. Experimental results show that the higher injection temperature and lowpressure velocity can mitigate the pre-crystallization of the injection chamber. However, when the low-pressure velocity exceeds 0.2 m·s-1, the air entrapment in the chamber occurs. Besides, when the high-pressure velocity is greater than 2.5 m·s-1, the overflow channel at the final filling position is covered by the liquid metal too early. Finally, the injection temperature of 650 °C, the low-pressure velocity of 0.2 m·s-1, the high-and low-pressure velocity’s switching position of 320 mm and the high-pressure velocity of 2 m·s-1 are obtained as the optimal parameters by the software simulation, which has been verified by actual production.
文摘After many years of development, die casting technology of metallic materials has been matured. In this paper,the lower-support and its injecting system were created with commercial software. And then the simulation softwareFLOW3D was applied to study the flow behavior of the melt during injection filling process. Both temperature field anddefect distribution were simulated. Based on these results, the better injecting system with two additional overflows wasadopted.
文摘This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss how to prevent gas entrapment and propose new methods.
文摘High-speed injection die casting is an efficient manufacturing technology for upgrading aluminum die-cast products.However,deficiencies(such as die damage in early period)due to larger load on the molding die compared with conventional technology have brought new challenges.In this study,the cause of damage generated in super high-speed injection was investigated by the combination of experimental observation of the dies and CAE simulation(e.g.die temperature analysis,flow analysis and thermal stress analysis).The potential countermeasures to solve the above problems were also proposed.
基金financially supported by the Fundamental Research Funds for the Central Universities(WUT:2017IVA036)111 Project(B17034)State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2018-003)
文摘The morphology and content of the divorced eutectic in the microstructure of high pressure die casting(HPDC) magnesium alloy have a great influence on the final performance of castings. Based on the previous work concerning simulation of the nucleation and dendritic growth of primary α-Mg during the solidification of magnesium alloy under HPDC process, an extension was made to the formerly established CA(Cellular Automaton) model with the purpose of modeling the nucleation and growth of Mg-Al eutectic. With a temperature field and solute field obtained during simulation of the primary α-Mg dendrites as the initial condition of the modified CA model, modeling of the Mg-Al eutectic with a divorced morphology was achieved. Moreover, the simulated results were in accordance with the experimental ones regarding the distribution and content of the divorced eutectic. Taking a "cover-plate" die casting with AM60 magnesium alloy as an example, the rapid solidification with a high cooling rate at the surface layer of the casting led to a fine and uniform grain size of primary α-Mg, while the divorced eutectic at the grain boundary revealed a more dispersed and granular morphology. Islands of divorced eutectic were observed at the central region of the casting, due to the existence of ESCs(Externally Solidified Crystals) which contributed to a coarse and non-uniform grain size of primary α-Mg. The volume percentage of the eutectic β-Mg_(17)Al_(12) phase is about 2%-6% in the die casting as a whole. The numerical model established in this study is of great significance to the study of the divorced eutectic in the microstructure of die cast magnesium alloy.
基金the National Natural Science Foundation(Granted Number 50276010)
文摘The theoretical model of the flow field of the dual slot die in melt blowing process is founded. The model is solved numerically with finite difference method. The distributions of the air velocity component in x direction along x-axis and y-axis and the air temperature distributions along x-axis and y-axis are obtained via numerical computation. The computation results coincide with the experimental data given by Harphain and Shambaugh. The distributions of the air velocity and air temperature are introduced into the air drag model of melt blowing. The model prediction of the fiber diameter agrees with the experimental data well.
基金Funded by the Fundamental Research Funds for the Central University (No.2010-II-025)the National Natural Science Foundation of China(No.50675165)
文摘Based on the car front-wheel-hub forging forming process of numerical simulation, the temperature gradient expression of forging model cavity near the surface layer was got ten, which illustrates that the forging temperature gradient is related to forging die materials thermal conductivity, specific heat and impact speed, and the correlation coefficient is 0.97. Under the different thermal conductivity, heat capacity and forging speed, the temperature gradient was compared with each other. The paper obtained the relevant laws, which illustrates the temperature gradient relates to these three parameters in a sequence of thermal conductivity 〉 impact speed〉 specific heat capacity. To reduce thermal stress in the near-surface layer of hot forging cavity, the material with greater thermal conductivity coefficient and specific heat capacity should be used.
文摘This study is subject to the finite element and abd uc tive network method application in the multi-cavity die. In order to select the optimal cooling system parameters to minimize the warp of a die-casting die, t he Taguchi’s method and the abductive network are used. These methods are appli ed to create an efficient model with functional nodes for the considered problem . Once the cooling system parameters are developed, this network can be used to predict the warp for the die-casting die accurately. A simulated annealing (SA) optimization algorithm with a performance index is then applied to the neur al network for searching the optimal cooling system parameters, and obtain rathe r satisfactory result as compared with the corresponding finite element veri fication.