We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a pa...We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a particular single QD emission. It is found that the measured photolumineseence (PL) intensity is very sensitive to the size of metMlic disk, showing an enhancement factor of 11 when the optimal disk diameter is 2μm and the numerical aperture of microscope objective NA=0.5. It is found that for large metal disks, the Purcell effect is dominant for enhanced PL intensity, whereas for small size disks the main contribution comes from plasmon scattering at the disk edge within the light cone collected by the microscope objective.展开更多
It is reported that simple beam structure used for FBG tuning can cause FBG chirping. A novel tuning method utilizing the clamped beam structure under pure bending is introduced. In this paper, we experimentally and t...It is reported that simple beam structure used for FBG tuning can cause FBG chirping. A novel tuning method utilizing the clamped beam structure under pure bending is introduced. In this paper, we experimentally and theoretically demonstrate that new method can tune the Bragg wavelength without chirp. Further integration of this package can be used for FBG athermal/MEMS packaging.展开更多
In this paper, we present the finding that periodic structural defects(PSDs) along a Bragg grating can shift the Bragg wavelength. This effect is theoretically analyzed and confirmed by numerical calculation. We find ...In this paper, we present the finding that periodic structural defects(PSDs) along a Bragg grating can shift the Bragg wavelength. This effect is theoretically analyzed and confirmed by numerical calculation. We find that the Bragg wavelength shift is determined by the defect size and the period of the defects. The Bragg wavelength can be well tuned by properly designing the PSDs, and this may provide an alternative method to fabricate grating-based multiwavelength devices, including optical filter arrays and laser arrays. In regards to wavelength precision, the proposed method has an advantage over the traditional methods, where the Bragg wavelengths are changed directly by changing the grating period. In addition, the proposed method can maintain grating strength when tuning the wavelength since only the period of defects is changed. This will be a benefit for devices such as arrays.展开更多
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922304the National Natural Science Foundation of China under Grant Nos 11474275 and 11464034
文摘We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a particular single QD emission. It is found that the measured photolumineseence (PL) intensity is very sensitive to the size of metMlic disk, showing an enhancement factor of 11 when the optimal disk diameter is 2μm and the numerical aperture of microscope objective NA=0.5. It is found that for large metal disks, the Purcell effect is dominant for enhanced PL intensity, whereas for small size disks the main contribution comes from plasmon scattering at the disk edge within the light cone collected by the microscope objective.
文摘It is reported that simple beam structure used for FBG tuning can cause FBG chirping. A novel tuning method utilizing the clamped beam structure under pure bending is introduced. In this paper, we experimentally and theoretically demonstrate that new method can tune the Bragg wavelength without chirp. Further integration of this package can be used for FBG athermal/MEMS packaging.
基金supported by the National Natural Science Foundation of China(Youth)(61306068)the Natural Science Foundation of Jiangsu Province of China(BK20130585,BK20140414)+1 种基金the National Natural Science Foundation of China(61435014,61504170,61504058)the National 863 Program(2015AA016902)
文摘In this paper, we present the finding that periodic structural defects(PSDs) along a Bragg grating can shift the Bragg wavelength. This effect is theoretically analyzed and confirmed by numerical calculation. We find that the Bragg wavelength shift is determined by the defect size and the period of the defects. The Bragg wavelength can be well tuned by properly designing the PSDs, and this may provide an alternative method to fabricate grating-based multiwavelength devices, including optical filter arrays and laser arrays. In regards to wavelength precision, the proposed method has an advantage over the traditional methods, where the Bragg wavelengths are changed directly by changing the grating period. In addition, the proposed method can maintain grating strength when tuning the wavelength since only the period of defects is changed. This will be a benefit for devices such as arrays.