Although computing the Khovanov homology of links is common in literature, no general formulae have been given for all of them. We give the graded Euler characteristic and the Khovanov homology of the 2-strand braid l...Although computing the Khovanov homology of links is common in literature, no general formulae have been given for all of them. We give the graded Euler characteristic and the Khovanov homology of the 2-strand braid link ,, and the 3-strand braid .展开更多
We introduce a simple recursive relation and give an explicit formula of the Kauffman bracket of two-strand braid link . Then, we give general formulas of the bracket of the sequence of links of three-strand braids . ...We introduce a simple recursive relation and give an explicit formula of the Kauffman bracket of two-strand braid link . Then, we give general formulas of the bracket of the sequence of links of three-strand braids . Finally, we give an interesting result that the Kauffman bracket of the three-strand braid link is actually the product of the brackets of the two-strand braid links and . Moreover, a recursive relation for is also given.展开更多
文摘Although computing the Khovanov homology of links is common in literature, no general formulae have been given for all of them. We give the graded Euler characteristic and the Khovanov homology of the 2-strand braid link ,, and the 3-strand braid .
文摘We introduce a simple recursive relation and give an explicit formula of the Kauffman bracket of two-strand braid link . Then, we give general formulas of the bracket of the sequence of links of three-strand braids . Finally, we give an interesting result that the Kauffman bracket of the three-strand braid link is actually the product of the brackets of the two-strand braid links and . Moreover, a recursive relation for is also given.