期刊文献+
共找到21,166篇文章
< 1 2 250 >
每页显示 20 50 100
Management of Traumatic Brain Injuries at the Kara Regional Hospital
1
作者 Tamegnon Dossouvi Tchaa Hodabalo Towoezim +3 位作者 Abdel Kader Moumouni Kokou Kanassoua Iroukora Kassegne Ekoue David Dosseh 《Surgical Science》 2024年第2期19-27,共9页
Introduction: Traumatic Brain Injury (TBI) is a major public health problem causing significant morbidity and mortality in young adults. This study aimed to describe the epidemiological, diagnostic, therapeutic, and e... Introduction: Traumatic Brain Injury (TBI) is a major public health problem causing significant morbidity and mortality in young adults. This study aimed to describe the epidemiological, diagnostic, therapeutic, and evolutionary aspects of TBI. Materials and Methods: This was a prospective, descriptive study conducted from 1 April 2022 to 31 March 2023 on patients admitted to and treated for cranioencephalic trauma in the General Surgery department of Kara Regional Hospital. Results: Eighty-three (83) patients with cranioencephalic trauma were managed out of 773 patients admitted to the department during the study period. The mean age was 34 ± 14.98 years and the sex ratio was 3.6 in favour of men. Motorbike taxi drivers were the social group most affected (n = 33, 40%). The causes of trauma were dominated by public road accidents (n = 80;96%). TBI was mild (n = 40;48%), moderate (n = 35;42%) and severe (n = 8;10%). Cerebral CT scans were performed in 19 patients (23%). Cerebral contusion (n = 4) was the most frequent cerebral lesion. Six patients (7%) with severe head injuries were transferred to Kara University Hospital. Six deaths (7%) occurred in patients with severe head injuries. The main sequelae were intermittent headaches in all patients reviewed, and memory problems (6%). Conclusion: Traumatic brain injuries are common at Kara Regional Hospital. Severe cranial trauma is less frequent but leads to death because of financial difficulties and limited technical facilities. 展开更多
关键词 Traumatic brain Injury Road Accident MOTORCYCLIST Cerebral Contusion TOGO
下载PDF
Mitophagy in acute central nervous system injuries:regulatory mechanisms and therapeutic potentials
2
作者 Siyi Xu Junqiu Jia +2 位作者 Rui Mao Xiang Cao Yun Xu 《Neural Regeneration Research》 SCIE CAS 2025年第9期2437-2453,共17页
Acute central nervous system injuries,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,traumatic brain injury,and spinal co rd injury,are a major global health challenge.Identifying optimal ... Acute central nervous system injuries,including ischemic stro ke,intracerebral hemorrhage,subarachnoid hemorrhage,traumatic brain injury,and spinal co rd injury,are a major global health challenge.Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities.Mitochondria are susceptible to damage after acute central nervous system injury,and this leads to the release of toxic levels of reactive oxygen species,which induce cell death.Mitophagy,a selective form of autophagy,is crucial in eliminating redundant or damaged mitochondria during these events.Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries.In this review,we provide a comprehensive overview of the process,classification,and related mechanisms of mitophagy.We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy.In the final section of this review,we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area. 展开更多
关键词 autophagy intracerebral hemorrhage ischemic stroke mitochondria mitochondrial biogenesis mitochondrial quality control MITOPHAGY spinal cord injury subarachnoid hemorrhage traumatic brain injury
下载PDF
Emergency Treatment and Nursing Care of a Patient with Multiple Injuries and Right Main Bronchus Rupture 被引量:1
3
作者 Tianran Li Lanping Shi 《Journal of Biosciences and Medicines》 2021年第7期231-245,共15页
<strong>Objective:</strong> To investigate the rescue and nursing process of a trauma patient with multiple injuries and rupture of the right main bronchus.<strong> Methods:</strong> A patient ... <strong>Objective:</strong> To investigate the rescue and nursing process of a trauma patient with multiple injuries and rupture of the right main bronchus.<strong> Methods:</strong> A patient with multiple injuries and rupture of the right main bronchus admitted to the emergency department of the Shenzhen Hospital of the University of Hong Kong was selected as the research object on December 11, 2019. <strong>Results:</strong> In this case, the medical team treated the patient under the guidance of ATLS (Advanced Traumatic Life Support), and for the first time in our department, we used bronchoscopy to replace the double-lumen endotracheal tube for left lung single-lung ventilation, finally the patient was successfully treated. <strong>Conclusion:</strong> Through a literature search, it is found that the main bronchus rupture is less common in clinical practice. In the trauma group, the use of fiberoptic bronchoscopy and the replacement of a double-lumen tracheal tube for left lung single-lung ventilation can improve the treatment rate of such patients and is worthy of clinical application. 展开更多
关键词 Multiple injuries Right Main Bronchus Bronchial Rupture nursing Treatment
下载PDF
Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys 被引量:8
4
作者 Pei Zhang Jie-Si Chen +24 位作者 Qi-Ye Li Long-Xiang Sheng Yi-Xing Gao Bing-Zheng Lu Wen-Bo Zhu Xiao-Yu Zhan Yuan Li Zhi-Bing Yuan Gang Xu Bi-Tao Qiu Min Yan Chun-Xue Guo You-Qiong Wang Yi-Jun Huang Jing-Xia Zhang Fu-Yu Liu Zhong-Wei Tang Sui-Zhen Lin David NCooper Huan-Ming Yang Jian Wang Yu-Qi Gao Wei Yin Guo-Jie Zhang Guang-Mei Yan 《Zoological Research》 SCIE CAS CSCD 2020年第1期3-19,共17页
Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily us... Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily using non-primate animal models that are genetically distant to humans, thus hindering the development of disease treatment. Here, we report that cynomolgus monkeys (Macaca fascicularis) exposed to acute HH developed human-like HH syndrome involving severe brain injury and abnormal behavior. Transcriptome profiling of white blood cells and brain tissue from monkeys exposed to increasing altitude revealed the central role of the HIF-1 and other novel signaling pathways, such as the vitamin D receptor (VDR) signaling pathway, in co-regulating HH-induced inflammation processes. We also observed profound transcriptomic alterations in brains after exposure to acute HH, including the activation of angiogenesis and impairment of aerobic respiration and protein folding processes, which likely underlie the pathological effects of HH-induced brain injury. Administration of progesterone (PROG) and steroid neuroprotectant 5α-androst-3β,5,6β-triol (TRIOL) significantly attenuated brain injuries and rescued the transcriptomic changes induced by acute HH. Functional investigation of the affected genes suggested that these two neuroprotectants protect the brain by targeting different pathways, with PROG enhancing erythropoiesis and TRIOL suppressing glutamate-induced excitotoxicity. Thus, this study advances our understanding of the pathology induced by acute HH and provides potential compounds for the development of neuroprotectant drugs for therapeutic treatment. 展开更多
关键词 Acute hypobaric hypoxia Cynomolgus monkeys brain injury NEUROPROTECTANT Gene regulatory networks
下载PDF
Gut microbial regulation of innate and adaptive immunity after traumatic brain injury 被引量:4
5
作者 Marta Celorrio Kirill Shumilov Stuart H.Friess 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期272-276,共5页
Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension,hypoxia,intracranial hypertension,and detrimental inflammation.However,the imperative... Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension,hypoxia,intracranial hypertension,and detrimental inflammation.However,the imperative to balance multiple clinical concerns simultaneously often results in therapeutic strategies targeted to address one clinical concern causing unintended effects in other remote organ systems.Recently the bidirectional communication between the gastrointestinal tract and the brain has been shown to influence both the central nervous system and gastrointestinal tract homeostasis in health and disease.A critical component of this axis is the microorganisms of the gut known as the gut microbiome.Changes in gut microbial populations in the setting of central nervous system disease,including traumatic brain injury,have been reported in both humans and experimental animal models and can be further disrupted by off-target effects of patient care.In this review article,we will explore the important role gut microbial populations play in regulating brain-resident and peripheral immune cell responses after traumatic brain injury.We will discuss the role of bacterial metabolites in gut microbial regulation of neuroinflammation and their potential as an avenue for therapeutic intervention in the setting of traumatic brain injury. 展开更多
关键词 gut microbiome gut microbiota gut-brain axis macrophage MICROGLIA MONOCYTE NEUROINFLAMMATION short-chain fatty acids T cell traumatic brain injury
下载PDF
Implications of periostin in the development of subarachnoid hemorrhage-induced brain injuries 被引量:9
6
作者 Hirofumi Nishikawa Hidenori Suzuki 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第12期1982-1984,共3页
Target of research in subarachnoid hemorrhage(SAH):The outcome of aneurysmal SAH remains poor despite advances in the diagnosis and treatment.Although many factors related to patients,aneurysms,and institutions,as ... Target of research in subarachnoid hemorrhage(SAH):The outcome of aneurysmal SAH remains poor despite advances in the diagnosis and treatment.Although many factors related to patients,aneurysms,and institutions,as well as physiological parameters and medical complications were reported as prognostic factors, 展开更多
关键词 Implications of periostin the development subarachnoid hemorrhage-induced brain injuries
下载PDF
Advantages of nanocarriers for basic research in the field of traumatic brain injury 被引量:2
7
作者 Xingshuang Song Yizhi Zhang +1 位作者 Ziyan Tang Lina Du 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期237-245,共9页
A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue.To overcome this problem,researche... A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue.To overcome this problem,researchers have begun to focus on nanocarriers and other brain-targeting drug delivery systems.In this review,we summarize the epidemiology,basic pathophysiology,current clinical treatment,the establishment of models,and the evaluation indicators that are commonly used for traumatic brain injury.We also report the current status of traumatic brain injury when treated with nanocarriers such as liposomes and vesicles.Nanocarriers can overcome a variety of key biological barriers,improve drug bioavailability,increase intracellular penetration and retention time,achieve drug enrichment,control drug release,and achieve brain-targeting drug delivery.However,the application of nanocarriers remains in the basic research stage and has yet to be fully translated to the clinic. 展开更多
关键词 blood-brain barriers brain targeting central nervous system extracellular vesicles inflammatory factor microglial cell NANOCARRIERS nanoparticles neural restoration traumatic brain injury
下载PDF
Biomaterials and tissue engineering in traumatic brain injury:novel perspectives on promoting neural regeneration 被引量:2
8
作者 Shihong Zhu Xiaoyin Liu +7 位作者 Xiyue Lu Qiang Liao Huiyang Luo Yuan Tian Xu Cheng Yaxin Jiang Guangdi Liu Jing Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2157-2174,共18页
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ... Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential. 展开更多
关键词 bioactive materials BIOMATERIALS EXOSOMES neural regeneration scaffolds stem cells tissue engineering traumatic brain injury
下载PDF
P7C3-A20 treats traumatic brain injury in rats by inhibiting excessive autophagy and apoptosis 被引量:2
9
作者 Zhiqing Yang Zhenchao Wang +4 位作者 Xiaoqi Deng Lingxin Zhu Zhaomeng Song Changyu Cao Xinran Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1078-1083,共6页
Traumatic brain injury is a severe health problem leading to autophagy and apoptosis in the brain.3,6-Dibromo-beta-fluoro-N-(3-methoxyphenyl)-9H-carbazole-9-propanamine(P7C3-A20)can be neuroprotective in various disea... Traumatic brain injury is a severe health problem leading to autophagy and apoptosis in the brain.3,6-Dibromo-beta-fluoro-N-(3-methoxyphenyl)-9H-carbazole-9-propanamine(P7C3-A20)can be neuroprotective in various diseases,including ischemic stroke and neurodegenerative diseases.However,whether P7C3-A20 has a therapeutic effect on traumatic brain injury and its possible molecular mechanisms are unclear.Therefore,in the present study,we investigated the therapeutic effects of P7C3-A20 on traumatic brain injury and explored the putative underlying molecular mechanisms.We established a traumatic brain injury rat model using a modified weight drop method.P7C3-A20 or vehicle was injected intraperitoneally after traumatic brain injury.Severe neurological deficits were found in rats after traumatic brain injury,with deterioration in balance,walking function,and learning memory.Furthermore,hematoxylin and eosin staining showed significant neuronal cell damage,while terminal deoxynucleotidyl transferase mediated dUTP nick end labeling staining indicated a high rate of apoptosis.The presence of autolysosomes was observed using transmission electron microscope.P7C3-A20 treatment reversed these pathological features.Western blotting showed that P7C3-A20 treatment reduced microtubule-associated protein 1 light chain 3-Ⅱ(LC3-Ⅱ)autophagy protein,apoptosis-related proteins(namely,Bcl-2/adenovirus E1B 19-kDa-interacting protein 3[BNIP3],and Bcl-2 associated x protein[Bax]),and elevated ubiquitin-binding protein p62(p62)autophagy protein expression.Thus,P7C3-A20 can treat traumatic brain injury in rats by inhibiting excessive autophagy and apoptosis. 展开更多
关键词 APOPTOSIS AUTOPHAGY CORTEX HIPPOCAMPUS motor function P7C3-A20 traumatic brain injury
下载PDF
Mesenchymal stem cell-derived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration 被引量:2
10
作者 Ye Xiong Asim Mahmood Michael Chopp 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期49-54,共6页
Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injur... Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury. 展开更多
关键词 biomarkers extracellular vesicles functional outcome mesenchymal stem/stromal cells NEUROINFLAMMATION NEUROPLASTICITY NEUROPROTECTION traumatic brain injury
下载PDF
Toll-like receptor 4 as a possible therapeutic target for delayed brain injuries after aneurysmal subarachnoid hemorrhage 被引量:24
11
作者 Takeshi Okada Hidenori Suzuki 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期193-196,共4页
Neuroinflammation is a well-recognized consequence of subarachnoid hemorrhage(SAH), and Toll-like receptor(TLR) 4 may be an important therapeutic target for post-SAH neuroinflammation. Of the TLR family members, T... Neuroinflammation is a well-recognized consequence of subarachnoid hemorrhage(SAH), and Toll-like receptor(TLR) 4 may be an important therapeutic target for post-SAH neuroinflammation. Of the TLR family members, TLR4 is expressed in various cell types in the central nervous system, and is unique in that it can signal through both the myeloid differentiation primary-response protein 88-dependent and the toll receptor associated activator of interferon-dependent cascades to coordinate the maximal inflammatory response. TLR4 can be activated by many endogenous ligands having damage-associated molecular patterns including heme and fibrinogen at the rupture of an intracranial aneurysm, and the resultant inflammatory reaction and thereby tissue damages may furthermore activate TLR4. It is widely accepted that the excreted products of TLR4 signaling alter neuronal functions. Previous studies have focused on the pathway through nuclear factor(NF)-κΒ signaling among TLR4 signaling pathways as to the development of early brain injury(EBI) such as neuronal apoptosis and blood-brain barrier disruption, and cerebral vasospasm. However, many findings suggest that both pathways via NF-κΒ and mitogen-activated protein kinases may be involved in EBI and cerebral vasospasm development. To overcome EBI and cerebral vasospasm is important to improve outcomes after SAH, because both EBI and vasopasm are responsible for delayed brain injuries or delayed cerebral ischemia, the most important preventable cause of poor outcomes after SAH. Increasing evidence has shown that TLR4 signaling plays an important role in SAH-induced brain injuries. Better understanding of the roles of TLR4 signaling in SAH will facilitate development of new treatments. 展开更多
关键词 cerebral aneurysm cerebral vasospasm early brain injury delayed brain injury delayed cerebral ischemia inflammation subarachnoid hemorrhage Toll-like receptor 4
下载PDF
Tumor necrosis factor-stimulated gene-6 ameliorates early brain injury after subarachnoid hemorrhage by suppressing NLRC4 inflammasome-mediated astrocyte pyroptosis 被引量:2
12
作者 Mingxiang Ding Lei Jin +4 位作者 Boyang Wei Wenping Cheng Wenchao Liu Xifeng Li Chuanzhi Duan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1064-1071,共8页
Subarachnoid hemorrhage is associated with high morbidity and mortality and lacks effective treatment.Pyroptosis is a crucial mechanism underlying early brain injury after subarachnoid hemorrhage.Previous studies have... Subarachnoid hemorrhage is associated with high morbidity and mortality and lacks effective treatment.Pyroptosis is a crucial mechanism underlying early brain injury after subarachnoid hemorrhage.Previous studies have confirmed that tumor necrosis factor-stimulated gene-6(TSG-6)can exert a neuroprotective effect by suppressing oxidative stress and apoptosis.However,no study to date has explored whether TSG-6 can alleviate pyroptosis in early brain injury after subarachnoid hemorrhage.In this study,a C57BL/6J mouse model of subarachnoid hemorrhage was established using the endovascular perforation method.Our results indicated that TSG-6 expression was predominantly detected in astrocytes,along with NLRC4 and gasdermin-D(GSDMD).The expression of NLRC4,GSDMD and its N-terminal domain(GSDMD-N),and cleaved caspase-1 was significantly enhanced after subarachnoid hemorrhage and accompanied by brain edema and neurological impairment.To explore how TSG-6 affects pyroptosis during early brain injury after subarachnoid hemorrhage,recombinant human TSG-6 or a siRNA targeting TSG-6 was injected into the cerebral ventricles.Exogenous TSG-6 administration downregulated the expression of NLRC4 and pyroptosis-associated proteins and alleviated brain edema and neurological deficits.Moreover,TSG-6 knockdown further increased the expression of NLRC4,which was accompanied by more severe astrocyte pyroptosis.In summary,our study revealed that TSG-6 provides neuroprotection against early brain injury after subarachnoid hemorrhage by suppressing NLRC4 inflammasome activation-induced astrocyte pyroptosis. 展开更多
关键词 ASTROCYTE early brain injury INFLAMMASOME NLRC4 PYROPTOSIS subarachnoid hemorrhage tumor necrosis factor-stimulated gene-6(TSG-6)
下载PDF
Connecting cellular mechanisms and extracellular vesicle cargo in traumatic brain injury 被引量:1
13
作者 Nikita Ollen-Bittle Austyn D.Roseborough +2 位作者 Wenxuan Wang Jeng-liang D.Wu Shawn N.Whitehead 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2119-2131,共13页
Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial ac... Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury. 展开更多
关键词 axonal injury biomarkers blood-brain barrier chronic traumatic encephalopathy extracellular vesicles glial activation NEUROINFLAMMATION traumatic brain injury
下载PDF
Application of artificial hibernation technology in acute brain injury 被引量:1
14
作者 Xiaoni Wang Shulian Chen +5 位作者 Xiaoyu Wang Zhen Song Ziqi Wang Xiaofei Niu Xiaochu Chen Xuyi Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1940-1946,共7页
Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment ... Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment methods.Hibernation has the characteristics of low temperature,low metabolism,and hibernation rhythm,as well as protective effects on the nervous,cardiovascular,and motor systems.Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body’s metabolism,lowering the body’s core temperature,and allowing the body to enter a state similar to hibernation.This review introduces artificial hibernation technology,including mild hypothermia treatment technology,central nervous system regulation technology,and artificial hibernation-inducer technology.Upon summarizing the relevant research on artificial hibernation technology in acute brain injury,the research results show that artificial hibernation technology has neuroprotective,anti-inflammatory,and oxidative stress-resistance effects,indicating that it has therapeutic significance in acute brain injury.Furthermore,artificial hibernation technology can alleviate the damage of ischemic stroke,traumatic brain injury,cerebral hemorrhage,cerebral infarction,and other diseases,providing new strategies for treating acute brain injury.However,artificial hibernation technology is currently in its infancy and has some complications,such as electrolyte imbalance and coagulation disorders,which limit its use.Further research is needed for its clinical application. 展开更多
关键词 cute brain injury artificial hibernation HYPOTHERMIA low metabolism mild hypothermia
下载PDF
Homer signaling pathways as effective therapeutic targets for ischemic and traumatic brain injuries and retinal lesions 被引量:3
15
作者 Xiu-Quan Wu Ning Su +1 位作者 Zhou Fei Fei Fei 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第7期1454-1461,共8页
Ischemic and traumatic insults to the central nervous system account for most serious acute and fatal brain injuries and are usually characterized by primary and secondary damage.Secondary damage presents the greatest... Ischemic and traumatic insults to the central nervous system account for most serious acute and fatal brain injuries and are usually characterized by primary and secondary damage.Secondary damage presents the greatest challenge for medical staff;however,there are currently few effective therapeutic targets for secondary damage.Homer proteins are postsynaptic scaffolding proteins that have been implicated in ischemic and traumatic insults to the central nervous system.Homer signaling can exert either positive or negative effects during such insults,depending on the specific subtype of Homer protein.Homer 1b/c couples with other proteins to form postsynaptic densities,which form the basis of synaptic transmission,while Homer 1a expression can be induced by harmful external factors.Homer 1c is used as a unique biomarker to reveal alterations in synaptic connectivity before and during the early stages of apoptosis in retinal ganglion cells,mediated or affected by extracellular or intracellular signaling or cytoskeletal processes.This review summarizes the structural features,related signaling pathways,and diverse roles of Homer proteins in physiological and pathological processes.Upregulating Homer 1a or downregulating Homer 1b/c may play a neuroprotective role in secondary brain injuries.Homer also plays an important role in the formation of photoreceptor synapses.These findings confirm the neuroprotective effects of Homer,and support the future design of therapeutic drug targets or gene therapies for ischemic and traumatic brain injuries and retinal disorders based on Homer proteins. 展开更多
关键词 brain injury calcium signaling cerebral ischemia dendritic spine glutamate receptor Homer scaffolding protein neuron NEUROPROTECTION retinal ganglion cell review traumatic brain injury
下载PDF
Versatile strategies for adult neurogenesis:avenues to repair the injured brain 被引量:1
16
作者 Junyi Zhao Siyu Liu +1 位作者 Xianyuan Xiang Xinzhou Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期774-780,共7页
Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neur... Brain injuries due to trauma or stroke are major causes of adult death and disability.Unfortunately,few interventions are effective for post-injury repair of brain tissue.After a long debate on whether endogenous neurogenesis actually happens in the adult human brain,there is now substantial evidence to support its occurrence.Although neurogenesis is usually significantly stimulated by injury,the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient.Alternatively,exogenous stem cell transplantation has shown promising results in animal models,but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use.Recently,a high focus was placed on glia-to-neuron conversion under single-factor regulation.Despite some inspiring results,the validity of this strategy is still controversial.In this review,we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury.We also discuss their advantages and drawbacks,as to provide a comprehensive account of their potentials for further studies. 展开更多
关键词 adult neurogenesis glia-to-neuron conversion ischemic stroke neurogenic niche NEUROINFLAMMATION stem cell transplantation traumatic brain injury
下载PDF
Exploring cerebral structural and functional abnormalities in a mouse model of post-traumatic headache induced by mild traumatic brain injury 被引量:1
17
作者 Dan Yang Bin-Bin Nie +6 位作者 Jin-Gang He Zong-Qiang Lv Feng-Feng Mo Si-Yi Ouyang Jie Wang Ju-Xiang Chen Tao Tao 《Zoological Research》 SCIE CSCD 2024年第3期648-662,共15页
Mild traumatic brain injury(mTBI)-induced post-traumatic headache(PTH)is a pressing public health concern and leading cause of disability worldwide.Although PTH is often accompanied by neurological disorders,the exact... Mild traumatic brain injury(mTBI)-induced post-traumatic headache(PTH)is a pressing public health concern and leading cause of disability worldwide.Although PTH is often accompanied by neurological disorders,the exact underlying mechanism remains largely unknown.Identifying potential biomarkers may prompt the diagnosis and development of effective treatments for mTBI-induced PTH.In this study,a mouse model of mTBI-induced PTH was established to investigate its effects on cerebral structure and function during short-term recovery.Results indicated that mice with mTBI-induced PTH exhibited balance deficits during the early post-injury stage.Metabolic kinetics revealed that variations in neurotransmitters were most prominent in the cerebellum,temporal lobe/cortex,and hippocampal regions during the early stages of PTH.Additionally,variations in brain functional activities and connectivity were further detected in the early stage of PTH,particularly in the cerebellum and temporal cortex,suggesting that these regions play central roles in the mechanism underlying PTH.Moreover,our results suggested that GABA and glutamate may serve as potential diagnostic or prognostic biomarkers for PTH.Future studies should explore the specific neural circuits involved in the regulation of PTH by the cerebellum and temporal cortex,with these two regions potentially utilized as targets for non-invasive stimulation in future clinical treatment. 展开更多
关键词 Post-traumatic headache(PTH) Mild traumatic brain injury(mTBI) Metabolic kinetics FMRI CEREBELLUM
下载PDF
The miR-9-5p/CXCL11 pathway is a key target of hydrogen sulfide-mediated inhibition of neuroinflammation in hypoxic ischemic brain injury 被引量:2
18
作者 Yijing Zhao Tong Li +6 位作者 Zige Jiang Chengcheng Gai Shuwen Yu Danqing Xin Tingting Li Dexiang Liu Zhen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1084-1091,共8页
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r... We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury. 展开更多
关键词 chemokine(C-X-C motif)ligand 11 cystathionineβsynthase H2S hypoxic ischemic brain injury inflammation L-CYSTEINE lipopolysaccharide microglia miR-9-5p neuroprotection
下载PDF
Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury 被引量:1
19
作者 Jingzhou Liu Xin Xin +8 位作者 Jiejie Sun Yueyue Fan Xun Zhou Wei Gong Meiyan Yang Zhiping Li Yuli Wang Yang Yang Chunsheng Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期629-635,共7页
Traumatic brain injury results in neuronal loss and glial scar formation.Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury.Neuronal reprogr... Traumatic brain injury results in neuronal loss and glial scar formation.Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury.Neuronal reprogramming is a promising strategy to convert glial scars to neural tissue.However,previous studies have reported inconsistent results.In this study,an AAV9P1 vector incorporating an astrocyte-targeting P1 peptide and glial fibrillary acidic protein promoter was used to achieve dual-targeting of astrocytes and the glial scar while minimizing off-target effects.The results demonstrate that AAV9P1 provides high selectivity of astrocytes and reactive astrocytes.Moreover,neuronal reprogramming was induced by downregulating the polypyrimidine tract-binding protein 1 gene via systemic administration of AAV9P1 in a mouse model of traumatic brain injury.In summary,this approach provides an improved gene delivery vehicle to study neuronal programming and evidence of its applications for traumatic brain injury. 展开更多
关键词 AAV9P1 ASTROCYTES astrocyte-to-neuron conversion GFAP promoter glial scar induced neurons neuronal reprogramming P1 peptide PTBP1 traumatic brain injury
下载PDF
Transcriptomic and bioinformatics analysis of the mechanism by which erythropoietin promotes recovery from traumatic brain injury in mice 被引量:1
20
作者 Weilin Tan Jun Ma +9 位作者 Jiayuanyuan Fu Biying Wu Ziyu Zhu Xuekang Huang Mengran Du Chenrui Wu Ehab Balawi Qiang Zhou Jie Zhang Zhengbu Liao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期171-179,共9页
Recent studies have found that erythropoietin promotes the recovery of neurological function after traumatic brain injury.However,the precise mechanism of action remains unclea r.In this study,we induced moderate trau... Recent studies have found that erythropoietin promotes the recovery of neurological function after traumatic brain injury.However,the precise mechanism of action remains unclea r.In this study,we induced moderate traumatic brain injury in mice by intrape ritoneal injection of erythro poietin for 3 consecutive days.RNA sequencing detected a total of 4065 differentially expressed RNAs,including 1059 mRNAs,92 microRNAs,799 long non-coding RNAs,and 2115circular RNAs.Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses revealed that the coding and non-coding RNAs that were differentially expressed after traumatic brain injury and treatment with erythropoietin play roles in the axon guidance pathway,Wnt pathway,and MAPK pathway.Constructing competing endogenous RNA networks showed that regulatory relationship between the differentially expressed non-coding RNAs and mRNAs.Because the axon guidance pathway was repeatedly enriched,the expression of Wnt5a and Ephb6,key factors in the axonal guidance pathway,was assessed.Ephb6 expression decreased and Wnt5a expression increased after traumatic brain injury,and these effects were reversed by treatment with erythro poietin.These findings suggest that erythro poietin can promote recove ry of nerve function after traumatic brain injury through the axon guidance pathway. 展开更多
关键词 axon guidance bioinformatics analysis competing endogenous RNA ERYTHROPOIETIN Gene Ontology Kyoto Encyclopedia of Genes and Genomes non-coding RNA RNA sequencing transcriptomics traumatic brain injury
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部