The capability and reliability are crucial characteristics of mobile robots while navigating in complex environments. These robots are expected to perform many useful tasks which can improve the quality of life greatl...The capability and reliability are crucial characteristics of mobile robots while navigating in complex environments. These robots are expected to perform many useful tasks which can improve the quality of life greatly. Robot localization and decisionmaking are the most important cognitive processes during navigation. However, most of these algorithms are not efficient and are challenging tasks while robots navigate through complex environments. In this paper,we propose a biologically inspired method for robot decision-making, based on rat’s brain signals. Rodents accurately and rapidly navigate in complex spaces by localizing themselves in reference to the surrounding environmental landmarks. Firstly, we analyzed the rats’ strategies while navigating in the complex Y-maze, and recorded local field potentials(LFPs), simultaneously.The recorded LFPs were processed and different features were extracted which were used as the input in the artificial neural network(ANN) to predict the rat’s decision-making in each junction. The ANN performance was tested in a real robot and good performance is achieved. The implementation of our method on a real robot, demonstrates its abilities to imitate the rat’s decision-making and integrate the internal states with external sensors, in order to perform reliable navigation in complex maze.展开更多
The post-Moore's era has boosted the progress in carbon nanotube-based transistors.Indeed,the 5 G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices....The post-Moore's era has boosted the progress in carbon nanotube-based transistors.Indeed,the 5 G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices.In this perspective,we deliver the readers with the latest trends in carbon nanotube research,including high-frequency transistors,biomedical sensors and actuators,brain–machine interfaces,and flexible logic devices and energy storages.Future opportunities are given for calling on scientists and engineers into the emerging topics.展开更多
基金supported by the Japanese Government,Grants-in-Aid for Scientific Research 2014 to 2016 under Grant No.26330296
文摘The capability and reliability are crucial characteristics of mobile robots while navigating in complex environments. These robots are expected to perform many useful tasks which can improve the quality of life greatly. Robot localization and decisionmaking are the most important cognitive processes during navigation. However, most of these algorithms are not efficient and are challenging tasks while robots navigate through complex environments. In this paper,we propose a biologically inspired method for robot decision-making, based on rat’s brain signals. Rodents accurately and rapidly navigate in complex spaces by localizing themselves in reference to the surrounding environmental landmarks. Firstly, we analyzed the rats’ strategies while navigating in the complex Y-maze, and recorded local field potentials(LFPs), simultaneously.The recorded LFPs were processed and different features were extracted which were used as the input in the artificial neural network(ANN) to predict the rat’s decision-making in each junction. The ANN performance was tested in a real robot and good performance is achieved. The implementation of our method on a real robot, demonstrates its abilities to imitate the rat’s decision-making and integrate the internal states with external sensors, in order to perform reliable navigation in complex maze.
基金the financial funds of the National Key Research and Development Program of China(2016YFA02019042017YFB0405400)+12 种基金the Project of“20 items of University”of Jinan(2018GXRC031)NSFC(No.52022037)Taishan Scholars Project Special Funds(tsqn201812083)the NSFC(51802116)supported by NSFC(52002165)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019BEM040)Beijing National Laboratory for Molecular Science(BNLMS202013)Guangdong Provincial Natural Science Foundation(2021A1515010229)Shenzhen Basic Research Project(JCYJ20210317150714001)the Innovation Project for Guangdong Provincial Department of Education(2019KTSCX155)the National Science Foundation China(NSFC,Project 52071225)the National Science Center and the Czech Republic under the ERDF program“Institute of Environmental Technology—Excellent Research”(No.CZ.02.1.01/0.0/0.0/16_019/0000853)the Sino-German Research Institute for support(Project No.GZ 1400)。
文摘The post-Moore's era has boosted the progress in carbon nanotube-based transistors.Indeed,the 5 G communication and cloud computing stimulate the research in applications of carbon nanotubes in electronic devices.In this perspective,we deliver the readers with the latest trends in carbon nanotube research,including high-frequency transistors,biomedical sensors and actuators,brain–machine interfaces,and flexible logic devices and energy storages.Future opportunities are given for calling on scientists and engineers into the emerging topics.