While it is well-known that neuronal activity promotes plasticity and connectivity, the success of activity-based neural rehabilitation programs remains extremely limited in human clinical experience because they cann...While it is well-known that neuronal activity promotes plasticity and connectivity, the success of activity-based neural rehabilitation programs remains extremely limited in human clinical experience because they cannot adequately control neuronal excitability and activity within the injured brain in order to induce repair. However, it is possible to non-invasively modulate brain plasticity using brain stimu- lation techniques such as repetitive transcranial (rTMS) and transcranial direct current stimulation (tDCS) techniques, which show promise for repairing injured neural circuits (Henrich-Noack et al., 2013; Lefaucher et al., 2014). Yet we are far from having full control of these techniques to repair the brain following neurotrauma and need more fundamen- tal research (Ellaway et al., 2014; Lefaucher et al., 2014). In this perspective we discuss the mechanisms by which rTMS may facilitate neurorehabilitation and propose experimental techniques with which magnetic stimulation may be investi- gated in order to optimise its treatment potential.展开更多
In contrast to the spinal control of erection, relatively little is known about the brain control. In the present review, we have outlined the role of brain structures involved in penile erection and provided a synops...In contrast to the spinal control of erection, relatively little is known about the brain control. In the present review, we have outlined the role of brain structures involved in penile erection and provided a synopsis on the brain circuit of erection. Findings from both animal and human studies are discussed. Evidence suggests that the most important structures are the frontal lobe, cingulate gyrus, amygdala, thalamus and hypothalamus. Within the brain circuit of erection, the thalamus serves as a gate-controller in which all relevant information is evaluated and further processed to higher and lower centres.展开更多
OBJECTIVE Temporal lobe epilepsy(TLE)is one of the most common types of human epilepsy,and they are often resistant to current treatments.METHODS By using optogenetic,electrophysiological,imaging and pharmacology stra...OBJECTIVE Temporal lobe epilepsy(TLE)is one of the most common types of human epilepsy,and they are often resistant to current treatments.METHODS By using optogenetic,electrophysiological,imaging and pharmacology strategies,we aimed toinvestigate the underlying circuit mechanism of TLE and tried to developthe novel and efficient approach to control epilepsy.RESULTS(1)Using micro PET and multichannel EEG recording,we found an abnormal neural network,characterized by early hypometabolism and after discharge spread,during the epileptogenensis of TLE.(2)Deep brain stimulation,especially low frequency stimulation,targeted the epileptic focus and the areas outside of the focus(critical regions for seizure spread),such as the piriform cortex,cerebellum,entorhinal cortex or subiculum,reduced seizure severity in TLE.Its anti-epileptic effect is time-window dependent and polarity dependent,which shows a promising strategy for treating epileptic seizures.(3)Using an optogenetic strategy,we demonstrated that excitatory projection from entorhinal cortex to hippocampus instructs the brain-stimulation treatments of epilepsy.(4)Our data from both the clinical and experimental studies further demonstrated that a disinhibitory GABAergic neuronmediated microcircuit in the subiculum contributes to secondary generalized seizures in TLE.(5)Finally,based on abnormal synchronization of the electrical activity in epileptic circuit,we developed electroresponsive hydrogel nanoparticles modified with angiopep-2 to facilitate the delivery of the antiepileptic drug phenytoin sodium,which greatly improves the therapeutic index.CONCLUSION Our findings may update the current view of epileptic neuronal networks and suggest possible promising ways for epilepsy treatment.展开更多
This paper considers a model of a recursive neuron whose circuit the author finds interesting, not because of its financial possibility, but because of its surprising electrical behavior. Below, a recursive neuron is ...This paper considers a model of a recursive neuron whose circuit the author finds interesting, not because of its financial possibility, but because of its surprising electrical behavior. Below, a recursive neuron is modeled with excitatory and inhibitory triggering, and simulated using Win Spice. This model is shown to be capable of controlled toggling, and so promises energy-efficient, massively parallel computing.展开更多
In contrast to the spinal control of erection,relatively little is known about the brain control.In the present review,we have outlined the role of brain structures involved in penile erection and provided a synopsis ...In contrast to the spinal control of erection,relatively little is known about the brain control.In the present review,we have outlined the role of brain structures involved in penile erection and provided a synopsis on the brain circuit of erection.Findings from both animal and human studies are discussed.Evidence suggests that the most important structures are the frontal lobe,cingulate gyrus,amygdala,thalamus and hypothalamus.Within the brain circuit of erection,the thalamus serves as a gate-controller in which all relevant information is evaluated and further processed to higher and lower centres.展开更多
Optical brain imaging using functional near infra-red spectroscopy (fNIRS) offers a portable and noninvasive tool for monitoring of blood oxygenation. In this paper we have introduced a new miniaturized photodetector ...Optical brain imaging using functional near infra-red spectroscopy (fNIRS) offers a portable and noninvasive tool for monitoring of blood oxygenation. In this paper we have introduced a new miniaturized photodetector front-end on achip to be applied in a portable fNIRS system. It includes silicon avalanche photodiodes (SiAPD), Transimpedance amplifier (TIA) front-end and Quench-Reset circuitry to operate in both linear and Geiger modes. So it can be applied for both continuous-wave fNIRS (CW-fNIRS) and also single-photon counting. Proposed SiAPD exhibits high-avalanche gain (>100), low-breakdown voltage ( V) and high photon detection efficiency accompanying with low dark count rates. The proposed TIA front-end offer a low power consumption ( mW), high-transimpedance gain (up to 250 MV/A), tunable bandwidth (1 kHz - 1 GHz) and very low input and output noise (~few fA/√Hz and few μV/√Hz). The Geiger-mode photon counting front-end also exhibits a controllable hold-off and rest time with an ultra fast quench-reset time (few ns). This integrated system has been implemented using submicron (0.35 μm) standard CMOS technology.展开更多
文摘While it is well-known that neuronal activity promotes plasticity and connectivity, the success of activity-based neural rehabilitation programs remains extremely limited in human clinical experience because they cannot adequately control neuronal excitability and activity within the injured brain in order to induce repair. However, it is possible to non-invasively modulate brain plasticity using brain stimu- lation techniques such as repetitive transcranial (rTMS) and transcranial direct current stimulation (tDCS) techniques, which show promise for repairing injured neural circuits (Henrich-Noack et al., 2013; Lefaucher et al., 2014). Yet we are far from having full control of these techniques to repair the brain following neurotrauma and need more fundamen- tal research (Ellaway et al., 2014; Lefaucher et al., 2014). In this perspective we discuss the mechanisms by which rTMS may facilitate neurorehabilitation and propose experimental techniques with which magnetic stimulation may be investi- gated in order to optimise its treatment potential.
文摘In contrast to the spinal control of erection, relatively little is known about the brain control. In the present review, we have outlined the role of brain structures involved in penile erection and provided a synopsis on the brain circuit of erection. Findings from both animal and human studies are discussed. Evidence suggests that the most important structures are the frontal lobe, cingulate gyrus, amygdala, thalamus and hypothalamus. Within the brain circuit of erection, the thalamus serves as a gate-controller in which all relevant information is evaluated and further processed to higher and lower centres.
基金The project supportedp by National Natural Science Foundation of China(91332202,81221003)
文摘OBJECTIVE Temporal lobe epilepsy(TLE)is one of the most common types of human epilepsy,and they are often resistant to current treatments.METHODS By using optogenetic,electrophysiological,imaging and pharmacology strategies,we aimed toinvestigate the underlying circuit mechanism of TLE and tried to developthe novel and efficient approach to control epilepsy.RESULTS(1)Using micro PET and multichannel EEG recording,we found an abnormal neural network,characterized by early hypometabolism and after discharge spread,during the epileptogenensis of TLE.(2)Deep brain stimulation,especially low frequency stimulation,targeted the epileptic focus and the areas outside of the focus(critical regions for seizure spread),such as the piriform cortex,cerebellum,entorhinal cortex or subiculum,reduced seizure severity in TLE.Its anti-epileptic effect is time-window dependent and polarity dependent,which shows a promising strategy for treating epileptic seizures.(3)Using an optogenetic strategy,we demonstrated that excitatory projection from entorhinal cortex to hippocampus instructs the brain-stimulation treatments of epilepsy.(4)Our data from both the clinical and experimental studies further demonstrated that a disinhibitory GABAergic neuronmediated microcircuit in the subiculum contributes to secondary generalized seizures in TLE.(5)Finally,based on abnormal synchronization of the electrical activity in epileptic circuit,we developed electroresponsive hydrogel nanoparticles modified with angiopep-2 to facilitate the delivery of the antiepileptic drug phenytoin sodium,which greatly improves the therapeutic index.CONCLUSION Our findings may update the current view of epileptic neuronal networks and suggest possible promising ways for epilepsy treatment.
文摘This paper considers a model of a recursive neuron whose circuit the author finds interesting, not because of its financial possibility, but because of its surprising electrical behavior. Below, a recursive neuron is modeled with excitatory and inhibitory triggering, and simulated using Win Spice. This model is shown to be capable of controlled toggling, and so promises energy-efficient, massively parallel computing.
文摘In contrast to the spinal control of erection,relatively little is known about the brain control.In the present review,we have outlined the role of brain structures involved in penile erection and provided a synopsis on the brain circuit of erection.Findings from both animal and human studies are discussed.Evidence suggests that the most important structures are the frontal lobe,cingulate gyrus,amygdala,thalamus and hypothalamus.Within the brain circuit of erection,the thalamus serves as a gate-controller in which all relevant information is evaluated and further processed to higher and lower centres.
文摘Optical brain imaging using functional near infra-red spectroscopy (fNIRS) offers a portable and noninvasive tool for monitoring of blood oxygenation. In this paper we have introduced a new miniaturized photodetector front-end on achip to be applied in a portable fNIRS system. It includes silicon avalanche photodiodes (SiAPD), Transimpedance amplifier (TIA) front-end and Quench-Reset circuitry to operate in both linear and Geiger modes. So it can be applied for both continuous-wave fNIRS (CW-fNIRS) and also single-photon counting. Proposed SiAPD exhibits high-avalanche gain (>100), low-breakdown voltage ( V) and high photon detection efficiency accompanying with low dark count rates. The proposed TIA front-end offer a low power consumption ( mW), high-transimpedance gain (up to 250 MV/A), tunable bandwidth (1 kHz - 1 GHz) and very low input and output noise (~few fA/√Hz and few μV/√Hz). The Geiger-mode photon counting front-end also exhibits a controllable hold-off and rest time with an ultra fast quench-reset time (few ns). This integrated system has been implemented using submicron (0.35 μm) standard CMOS technology.