期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Assessing target optical camouflage effects using brain functional networks:A feasibility study
1
作者 Zhou Yu Li Xue +4 位作者 Weidong Xu Jun Liu Qi Jia Jianghua Hu Jidong Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期69-77,共9页
Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby c... Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy. 展开更多
关键词 Camouflage effect evaluation Electroencephalography(EEG) brain functional networks Machine learning
下载PDF
Brain Functional Networks with Dynamic Hypergraph Manifold Regularization for Classification of End-Stage Renal Disease Associated with Mild Cognitive Impairment
2
作者 Zhengtao Xi Chaofan Song +2 位作者 Jiahui Zheng Haifeng Shi Zhuqing Jiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2243-2266,共24页
The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot rep... The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot represent functional interactions or higher-order relationships between multiple brain regions.To solve this issue,we developed a method to construct a dynamic brain functional network(DBFN)based on dynamic hypergraph MR(DHMR)and applied it to the classification of ESRD associated with mild cognitive impairment(ESRDaMCI).The construction of DBFN with Pearson’s correlation(PC)was transformed into an optimization model.Node convolution and hyperedge convolution superposition were adopted to dynamically modify the hypergraph structure,and then got the dynamic hypergraph to form the manifold regular terms of the dynamic hypergraph.The DHMR and L_(1) norm regularization were introduced into the PC-based optimization model to obtain the final DHMR-based DBFN(DDBFN).Experiment results demonstrated the validity of the DDBFN method by comparing the classification results with several related brain functional network construction methods.Our work not only improves better classification performance but also reveals the discriminative regions of ESRDaMCI,providing a reference for clinical research and auxiliary diagnosis of concomitant cognitive impairments. 展开更多
关键词 End-stage renal disease mild cognitive impairment brain functional network dynamic hypergraph manifold regularization CLASSIFICATION
下载PDF
Brain Functional Network Based on Small-Worldness and Minimum Spanning Tree for Depression Analysis
3
作者 Bingtao Zhang Dan Wei +1 位作者 Yun Su Zhonglin Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期198-208,共11页
Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in p... Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in patients with depression,this paper proposes a depression analysis method based on brain function network(BFN).To avoid the volume conductor effect,BFN was constructed based on phase lag index(PLI).Then the indicators closely related to depression were selected from weighted BFN based on small-worldness(SW)characteristics and binarization BFN based on the minimum spanning tree(MST).Differences analysis between groups and correlation analysis between these indicators and diagnostic indicators were performed in turn.The resting state electroencephalogram(EEG)data of 24 patients with depression and 29 healthy controls(HC)was used to verify our proposed method.The results showed that compared with HC,the information processing of BFN in patients with depression decreased,and BFN showed a trend of randomization. 展开更多
关键词 DEPRESSION brain function network(BFN) small-worldness(SW) minimum spanning tree(MST)
下载PDF
Extracting Sub-Networks from Brain Functional Network Using Graph Regularized Nonnegative Matrix Factorization
4
作者 Zhuqing Jiao Yixin Ji +1 位作者 Tingxuan Jiao Shuihua Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期845-871,共27页
Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the di... Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes. 展开更多
关键词 brain functional network sub-network functional connectivity graph regularized nonnegative matrix factorization(GNMF) aggregation matrix
下载PDF
Brain Functional Network Improved by Magnetic Stimulation at Acupoints during Mental Fatigue
5
作者 Shuo Yang Na Ai +3 位作者 Yanyun Qiao Lei Wang Hongli Yu Guizhi Xu 《Journal of Biomedical Science and Engineering》 2016年第10期65-70,共6页
To investigate the effects of magnetic stimulation at acupoints on brain functional network during mental fatigue, magnetic stimulation was applied to stimulate SHENMEN (HT7), HEGU (LI4) and LAOGONG (PC8) acupoint in ... To investigate the effects of magnetic stimulation at acupoints on brain functional network during mental fatigue, magnetic stimulation was applied to stimulate SHENMEN (HT7), HEGU (LI4) and LAOGONG (PC8) acupoint in this paper. The brain functional networks of normal state, mental fatigue state and stimulated state were constructed and the characteristic parameters were comparatively studied based on the complex network theory. The results showed that the connection of the network was enhanced by stimulating the HT7, LI4 and PC8 acupoint. In conclusion, magnetic stimulation at acupoints can effectively relieve mental fatigue. 展开更多
关键词 Magnetic Stimulation ACUPOINT Electroencephalograph (EEG) Mental Fatigue brain functional network
下载PDF
Extracting Multiple Nodes in a Brain Region of Interest for Brain Functional Network Estimation and Classification
6
作者 Chengcheng Wang Haimei Wang +1 位作者 Yifan Qiao Yining Zhang 《Journal of Applied Mathematics and Physics》 2022年第11期3408-3423,共16页
Purpose: Brain functional networks (BFNs) has become important approach for diagnosis of some neurological or psychological disorders. Before estimating BFN, obtaining blood oxygen level dependent (BOLD) representativ... Purpose: Brain functional networks (BFNs) has become important approach for diagnosis of some neurological or psychological disorders. Before estimating BFN, obtaining blood oxygen level dependent (BOLD) representative signals from brain regions of interest (ROIs) is important. In the past decades, the common method is generally to take a ROI as a node, averaging all the voxel time series inside it to extract a representative signal. However, one node does not represent the entire information of this ROI, and averaging method often leads to signal cancellation and information loss. Inspired by this, we propose a novel model extraction method based on an assumption that a ROI can be represented by multiple nodes. Methods: In this paper, we first extract multiple nodes (the number is user-defined) from the ROI based on two traditional methods, including principal component analysis (PCA), and K-means (Clustering according to the spatial position of voxels). Then, canonical correlation analysis (CCA) was issued to construct BFNs by maximizing the correlation between the representative signals corresponding to the nodes in any two ROIs. Finally, to further verify the effectiveness of the proposed method, the estimated BFNs are applied to identify subjects with autism spectrum disorder (ASD) and mild cognitive impairment (MCI) from health controls (HCs). Results: Experimental results on two benchmark databases demonstrate that the proposed method outperforms the baseline method in the sense of classification performance. Conclusions: We propose a novel method for obtaining nodes of ROId based on the hypothesis that a ROI can be represented by multiple nodes, that is, to extract the node signals of ROIs with K-means or PCA. Then, CCA is used to construct BFNs. 展开更多
关键词 brain functional network Node Selection Pearson’s Correlation Canonical Correlation Analysis brain Disorder Classification
下载PDF
Epileptic brain network mechanisms and neuroimaging techniques for the brain network
7
作者 Yi Guo Zhonghua Lin +1 位作者 Zhen Fan Xin Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2637-2648,共12页
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d... Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions. 展开更多
关键词 electrophysiological techniques EPILEPSY functional brain network functional magnetic resonance imaging functional near-infrared spectroscopy machine leaning molecular imaging neuroimaging techniques structural brain network virtual epileptic models
下载PDF
Consistent and Specific Multi-View Functional Brain Networks Fusion for Autism Spectrum Disorder Diagnosis
8
作者 Chaojun Zhang Chengcheng Wang +1 位作者 Limei Zhang Yunling Ma 《Journal of Applied Mathematics and Physics》 2023年第7期1914-1929,共16页
Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an ob... Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an objective basis for brain disorders such as autistic spectrum disorder (ASD). Due to its importance, researchers have proposed a number of FBN estimation methods. However, most existing methods only model a type of functional connection relationship between brain regions-of-interest (ROIs), such as partial correlation or full correlation, which is difficult to fully capture the subtle connections among ROIs since these connections are extremely complex. Motivated by the multi-view learning, in this study we propose a novel Consistent and Specific Multi-view FBNs Fusion (CSMF) approach. Concretely, we first construct multi-view FBNs (i.e., multiple types of FBNs modelling various relationships among ROIs), and then these FBNs are decomposed into a consistent representation matrix and their own specific matrices which capture their common and unique information, respectively. Lastly, to obtain a better brain representation, it is fusing the consistent and specific representation matrices in the latent representation spaces of FBNs, but not directly fusing the original FBNs. This potentially makes it more easily to find the comprehensively brain connections. The experimental results of ASD identification on the ABIDE datasets validate the effectiveness of our proposed method compared to several state-of-the-art methods. Our proposed CSMF method achieved 72.8% and 76.67% classification performance on the ABIDE dataset. 展开更多
关键词 functional brain network FUSION CONSISTENCY SPECIFICITY Autism Spectrum Disorder
下载PDF
Effect of cognitive training on brain dynamics
9
作者 吕贵阳 徐天勇 +3 位作者 陈飞燕 朱萍 王淼 何国光 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期529-536,共8页
The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to... The human brain is highly plastic.Cognitive training is usually used to modify functional connectivity of brain networks.Moreover,the structures of brain networks may determine its dynamic behavior which is related to human cognitive abilities.To study the effect of functional connectivity on the brain dynamics,the dynamic model based on functional connections of the brain and the Hindmarsh–Rose model is utilized in this work.The resting-state fMRI data from the experimental group undergoing abacus-based mental calculation(AMC)training and from the control group are used to construct the functional brain networks.The dynamic behavior of brain at the resting and task states for the AMC group and the control group are simulated with the above-mentioned dynamic model.In the resting state,there are the differences of brain activation between the AMC group and the control group,and more brain regions are inspired in the AMC group.A stimulus with sinusoidal signals to brain networks is introduced to simulate the brain dynamics in the task states.The dynamic characteristics are extracted by the excitation rates,the response intensities and the state distributions.The change in the functional connectivity of brain networks with the AMC training would in turn improve the brain response to external stimulus,and make the brain more efficient in processing tasks. 展开更多
关键词 brian dynamics functional brain networks cognitive training abacus-based mental calculation
下载PDF
Functional Brain Network Learning Based on Spatial Similarity for Brain Disorders Identification
10
作者 Lei Sun Tingting Guo 《Journal of Applied Mathematics and Physics》 2020年第11期2427-2437,共11页
Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, suc... Functional brain network (FBN) measures based on functional magnetic resonance imaging (fMRI) data, has become important biomarkers for early diagnosis and prediction of clinical outcomes in neurological diseases, such as Alzheimer’s diseases (AD) and its prodromal state (<em>i</em>.<em>e</em>., Mild cognitive impairment, MCI). In the past decades, researchers have developed numbers of approaches for FBN estimation, including Pearson’s correction (PC), sparse representation (SR), and so on. Despite their popularity and wide applications in current studies, most of the approaches for FBN estimation only consider the dependency between the measured blood oxygen level dependent (BOLD) time series, but ignore the spatial relationships between pairs of brain regions. In practice, the strength of functional connection between brain regions will decrease as their distance increases. Inspired by this, we proposed a new approach for FBN estimation based on the assumption that the closer brain regions tend to share stronger relationships or similarities. To verify the effectiveness of the proposed method, we conduct experiments on a public dataset to identify the patients with MCIs from health controls (HCs) using the estimated FBNs. Experimental results demonstrate that the proposed approach yields statistically significant improvement in seven performance metrics over using the baseline methods. 展开更多
关键词 functional brain network Pearson’s Correction Sparse Representation Spatial Relationships SIMILARITY Mild Cognitive Impairment
下载PDF
Estimating Functional Brain Network with Low-Rank Structure via Matrix Factorization for MCI/ASD Identification
11
作者 Yue Du Limei Zhang 《Journal of Applied Mathematics and Physics》 2021年第8期1946-1963,共18页
Functional brain networks (FBNs) provide a potential way for understanding the brain organizational patterns and diagnosing neurological diseases. Due to its importance, many FBN construction methods have been propose... Functional brain networks (FBNs) provide a potential way for understanding the brain organizational patterns and diagnosing neurological diseases. Due to its importance, many FBN construction methods have been proposed currently, including the low-order Pearson’s correlation (PC) and sparse representation (SR), as well as the high-order functional connection (HoFC). However, most existing methods usually ignore the information of topological structures of FBN, such as low-rank structure which can reduce the noise and improve modularity to enhance the stability of networks. In this paper, we propose a novel method for improving the estimated FBNs utilizing matrix factorization (MF). More specifically, we firstly construct FBNs based on three traditional methods, including PC, SR, and HoFC. Then, we reduce the rank of these FBNs via MF model for estimating FBN with low-rank structure. Finally, to evaluate the effectiveness of the proposed method, experiments have been conducted to identify the subjects with mild cognitive impairment (MCI) and autism spectrum disorder (ASD) from norm controls (NCs) using the estimated FBNs. The results on Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and Autism Brain Imaging Data Exchange (ABIDE) dataset demonstrate that the classification performances achieved by our proposed method are better than the selected baseline methods. 展开更多
关键词 functional brain network Matrix Factorization Pearson’s Correlation Sparse Representation High-Order functional Connection Mild Cognitive Impairment Autism Spectrum Disorder
下载PDF
Anxiety Network of Brain Function in Patients with Acute Cerebral Infarction 被引量:1
12
作者 Huanyin Li Huiwen Gui +1 位作者 Ye Yao Jixian Lin 《Health》 2021年第7期777-787,共11页
<strong>Objective:</strong> To explore the characteristics of brain functional network with anxiety in patients with acute cerebral infarction. <strong>Methods: </strong>A total of 39 patients ... <strong>Objective:</strong> To explore the characteristics of brain functional network with anxiety in patients with acute cerebral infarction. <strong>Methods: </strong>A total of 39 patients with acute cerebral infarction by cranial magnetic resonance examination were included, and all the patients were scored by the Hamilton Anxiety Scale. The anxiety scale is scored by a professional psychiatrist. There are a total of 14 items, including anxiety, nervousness, fear, insomnia, cognitive function, depressed mood, somatic anxiety, sensory system, etc. The total score ≥ 29 points may be severe;≥21 points, there must be obvious;≥14 points, there must be anxiety;a score of more than 7 may indicate anxiety. If the score is less than 7, there are no anxiety symptoms. All patients within 24 to 72 hours, complete the head examination magnetic resonance, computerized calculation of the DWI sequence images, according to the results of the calculation to superimpose the image of the lesion, image reconstruction in space, and carry out Binarization, defining the value of lesions as 1, and the value of non as 0. All lesions are superimposed into one image and integrated. The relationship between the lesions in this superimposed image and anxiety after cerebral infarction was analyzed. <strong>Results: </strong>The lesions were basically concentrated around the lateral ventricle, and they were mainly concentrated around the lateral ventricle. <strong>Conclusion:</strong> Patients with acute cerebral infarction in the lateral ventricle or basal ganglia are more prone to post-stroke anxiety. This has a certain evaluation value for the prognosis of future cerebral infarction, and has a certain understanding of the exploration of complications, and has a certain understanding of the exploration of complications. 展开更多
关键词 Acute Cerebral INFARCTION ANXIETY MRI brain functional network
下载PDF
Age-related hearing loss accelerates the decline in fast speech comprehension and the decompensation of cortical network connections 被引量:1
13
作者 He-Mei Huang Gui-Sheng Chen +10 位作者 Zhong-Yi Liu Qing-Lin Meng Jia-Hong Li Han-Wen Dong Yu-Chen Chen Fei Zhao Xiao-Wu Tang Jin-Liang Gao Xi-Ming Chen Yue-Xin Cai Yi-Qing Zheng 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1968-1975,共8页
Patients with age-related hearing loss face hearing difficulties in daily life.The causes of age-related hearing loss are complex and include changes in peripheral hearing,central processing,and cognitive-related abil... Patients with age-related hearing loss face hearing difficulties in daily life.The causes of age-related hearing loss are complex and include changes in peripheral hearing,central processing,and cognitive-related abilities.Furthermore,the factors by which aging relates to hearing loss via changes in audito ry processing ability are still unclear.In this cross-sectional study,we evaluated 27 older adults(over 60 years old) with age-related hearing loss,21 older adults(over 60years old) with normal hearing,and 30 younger subjects(18-30 years old) with normal hearing.We used the outcome of the uppe r-threshold test,including the time-compressed thres h old and the speech recognition threshold in noisy conditions,as a behavioral indicator of auditory processing ability.We also used electroencephalogra p hy to identify presbycusis-related abnormalities in the brain while the participants were in a spontaneous resting state.The timecompressed threshold and speech recognition threshold data indicated significant diffe rences among the groups.In patients with age-related hearing loss,information masking(babble noise) had a greater effect than energy masking(speech-shaped noise) on processing difficulties.In terms of resting-state electroencephalography signals,we observed enhanced fro ntal lobe(Brodmann’s area,BA11) activation in the older adults with normal hearing compared with the younger participants with normal hearing,and greater activation in the parietal(BA7) and occipital(BA19) lobes in the individuals with age-related hearing loss compared with the younger adults.Our functional connection analysis suggested that compared with younger people,the older adults with normal hearing exhibited enhanced connections among networks,including the default mode network,sensorimotor network,cingulo-opercular network,occipital network,and frontoparietal network.These results suggest that both normal aging and the development of age-related hearing loss have a negative effect on advanced audito ry processing capabilities and that hearing loss accele rates the decline in speech comprehension,especially in speech competition situations.Older adults with normal hearing may have increased compensatory attentional resource recruitment represented by the to p-down active listening mechanism,while those with age-related hearing loss exhibit decompensation of network connections involving multisensory integration. 展开更多
关键词 age-related hearing loss aging ELECTROENCEPHALOGRAPHY fast-speech comprehension functional brain network functional connectivity restingstate SLORETA source analysis speech reception threshold
下载PDF
Cognitive Analysis of Auditory Temporal Sequence Information Difference Based on Network Switching
14
作者 Pu Wang Chun Ying Fang 《Journal of Electronic Research and Application》 2022年第1期15-20,共6页
Auditory sense is an important way for people to receive and interact with foreign information.In different environment,the auditory sense changes.Therefore,it is necessary to find a detection method that can detect h... Auditory sense is an important way for people to receive and interact with foreign information.In different environment,the auditory sense changes.Therefore,it is necessary to find a detection method that can detect hearing in a timely manner.In this paper,EEG experiments were used to construct and compare brain functional networks in different states,and auditory state models were constructed with different auditory input signals.Secondly,the cross-correlation method is used to slice the signal and construct the adjacency matrix.Louvain community detection algorithm is used to process the data and calculate the network conversion rate under different parameters.It is concluded that the network conversion rate can be used to analyze the temporal variation of auditory information under the condition of controlled parameters.This indicates that the network conversion rate can also be used as a method to analyze auditory signals in the future. 展开更多
关键词 brain functional networks EEG network switching Auditory signals
下载PDF
Research on Modeling Approach of Brain Function Network Based on Anatomical Distance
15
作者 杨艳丽 郭浩 +1 位作者 陈俊杰 李海芳 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第6期758-762,共5页
The number of common neighbor between nodes is applied to the modeling of resting-state brain function network in order to analyze the effect of anatomical distance on the modeling of resting-state brain function netw... The number of common neighbor between nodes is applied to the modeling of resting-state brain function network in order to analyze the effect of anatomical distance on the modeling of resting-state brain function network. Three models based on anatomical distance, the number of common neighbor, or anatomical distance and the number of common neighbor are designed. Basing on residuals creates the evaluation criteria for selecting the optimal brain function model network in each class model. The model is selected to simulate the human real brain function network by comparison with real data functional magnetic resonance imaging(f MRI)network. Finally, the result shows that the best model only is based on anatomical distance. 展开更多
关键词 resting-state brain function network model network connection distance minimization topological property anatomical distance common neighbor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部