Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these...Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.展开更多
Injuries to the central nervous system(CNS)such as stroke,brain,and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration.The brain has a surprising...Injuries to the central nervous system(CNS)such as stroke,brain,and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration.The brain has a surprising intrinsic capability of recovering itself after injury.However,the hostile extrinsic microenvironment significantly hinders axon regeneration.Recent advances have indicated that the inactivation of intrinsic regenerative pathways plays a pivotal role in the failure of most adult CNS neuronal regeneration.Particularly,substantial evidence has convincingly demonstrated that the mechanistic target of rapamycin(mTOR)signaling is one of the most crucial intrinsic regenerative pathways that drive axonal regeneration and sprouting in various CNS injuries.In this review,we will discuss the recent findings and highlight the critical roles of mTOR pathway in axon regeneration in different types of CNS injury.Importantly,we will demonstrate that the reactivation of this regenerative pathway can be achieved by blocking the key mTOR signaling components such as phosphatase and tensin homolog(PTEN).Given that multiple mTOR signaling components are endogenous inhibitory factors of this pathway,we will discuss the promising potential of RNA-based therapeutics which are particularly suitable for this purpose,and the fact that they have attracted substantial attention recently after the success of coronavirus disease 2019 vaccination.To specifically tackle the blood-brain barrier issue,we will review the current technology to deliver these RNA therapeutics into the brain with a focus on nanoparticle technology.We will propose the clinical application of these RNA-mediated therapies in combination with the brain-targeted drug delivery approach against mTOR signaling components as an effective and feasible therapeutic strategy aiming to enhance axonal regeneration for functional recovery after CNS injury.展开更多
This case report investigates an uncommon occurrence of drug induced acute liver injury directly associated with the administration of levetiracetam in a patient following traumatic brain injury.
Antiepileptic drugs (AEDs), have demonstrated efficacy treating a number of acute conditions, encompassing a broad range of symptoms and syndromes, in addition to being first-line treatment for epilepsy. Clinically, s...Antiepileptic drugs (AEDs), have demonstrated efficacy treating a number of acute conditions, encompassing a broad range of symptoms and syndromes, in addition to being first-line treatment for epilepsy. Clinically, since their inception, AEDs have been used off-label for acute and chronic medical conditions, both as primary and as adjuvant therapies. In this review, we describe the observed clinical effectiveness of AEDs across a set of commonly encountered acute conditions in the general hospital: traumatic brain injury, pain, alcohol withdrawal. In describing the individual benefits and usages of specific agents, the applicability of these agents to other common neuropsychiatric conditions may be further explored.展开更多
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–b...Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field.展开更多
One hundred patients with focal epilepsy were recruited for the present study and their seizures controlled with antiepileptic drugs. The patients then orally received a capsule of tall gastrodis tuber powder, a tradi...One hundred patients with focal epilepsy were recruited for the present study and their seizures controlled with antiepileptic drugs. The patients then orally received a capsule of tall gastrodis tuber powder, a traditional Chinese drug, and underwent single photon emission computed tomography, long-term electroencephalogram, and CT/MRI. Blood drug levels were monitored throughout the study. Before treatment with tall gastrodis tuber, 35 of the 100 cases had abnormal CT/MRI scans; 79 cases had abnormal single photon emission computed tomography images; 86 cases had abnormal electroencephalogram; and a total of 146 abnormal perfusion foci were observed across the 100 subjects. After treatment, the number of patients with normal single photon emission computed tomography images increased by 12; normal electroencephalogram was observed in an additional 27 cases and the number of patients with epileptiform discharge decreased by 29 (34% of 86); the total number of abnormal perfusion foci decreased by 52 (36%) and changes in abnormal loci were visible in 65 patients. These changes indicate that the administration of tall gastrodis tuber in combination with antiepileptic drugs repairs abnormal perfusion foci in patients with focal epilepsy Our results demonstrate that traditional Chinese drugs can repair abnormal perfusion foci and, as such, are a promising new pathway in the treatment of focal epilepsy.展开更多
immunomodulary drug Setarud, which is composed of herbal extracts including Rosa canina, Urtica dioica and Tanacetum vulgare, supplemented with selenium exhibits anti-inflammatory and anti-oxidant properties. Therefor...immunomodulary drug Setarud, which is composed of herbal extracts including Rosa canina, Urtica dioica and Tanacetum vulgare, supplemented with selenium exhibits anti-inflammatory and anti-oxidant properties. Therefore, we hypothesized that Setarud will have a neuroprotective effect against ischemic cerebral injury. To validate this hypothesis, rats were intraperitoneally administered with 0.66 mL/kg Setarud for 30 minutes after middle cerebral artery occlusion. Triphenyltetrazolium chloride staining showed that Setarud could reduce cerebral infarct volume of rats subjected to cerebral ischemia. Transmission electron microscopy and hematoxylin-eosin staining results showed that Setarud could alleviate the degenerative changes in cortical neurons of rats with cerebral ischemia. The inclined plate test and prehensile test showed that Setarud could significantly improve the motor function of rats with cerebral ischemia. These findings suggest that Setarud shows neuroprotective effects against ischemic brain injury.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
基金supported by the National Natural Science Foundation of China, Nos. 82271411 (to RG), 51803072 (to WLiu)grants from the Department of Finance of Jilin Province, Nos. 2022SCZ25 (to RG), 2022SCZ10 (to WLiu), 2021SCZ07 (to RG)+2 种基金Jilin Provincial Science and Technology Program, No. YDZJ202201ZYTS038 (to WLiu)The Youth Support Programmed Project of China-Japan Union Hospital of Jilin University, No. 2022qnpy11 (to WLuo)The Project of China-Japan Union Hospital of Jilin University, No. XHQMX20233 (to RG)
文摘Various nanoparticle-based drug delivery systems for the treatment of neurological disorders have been widely studied.However,their inability to cross the blood–brain barrier hampers the clinical translation of these therapeutic strategies.Liposomes are nanoparticles composed of lipid bilayers,which can effectively encapsulate drugs and improve drug delivery across the blood–brain barrier and into brain tissue through their targeting and permeability.Therefore,they can potentially treat traumatic and nontraumatic central nervous system diseases.In this review,we outlined the common properties and preparation methods of liposomes,including thin-film hydration,reverse-phase evaporation,solvent injection techniques,detergent removal methods,and microfluidics techniques.Afterwards,we comprehensively discussed the current applications of liposomes in central nervous system diseases,such as Alzheimer's disease,Parkinson's disease,Huntington's disease,amyotrophic lateral sclerosis,traumatic brain injury,spinal cord injury,and brain tumors.Most studies related to liposomes are still in the laboratory stage and have not yet entered clinical trials.Additionally,their application as drug delivery systems in clinical practice faces challenges such as drug stability,targeting efficiency,and safety.Therefore,we proposed development strategies related to liposomes to further promote their development in neurological disease research.
基金supported by the National Natural Science Foundation of China(No.81974210)the Science and Technology Planning Project of Guangdong Province,China(No.2020A0505100045)the Natural Science Foundation of Guangdong Province(No.2019A1515010671),all to CKT.
文摘Injuries to the central nervous system(CNS)such as stroke,brain,and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration.The brain has a surprising intrinsic capability of recovering itself after injury.However,the hostile extrinsic microenvironment significantly hinders axon regeneration.Recent advances have indicated that the inactivation of intrinsic regenerative pathways plays a pivotal role in the failure of most adult CNS neuronal regeneration.Particularly,substantial evidence has convincingly demonstrated that the mechanistic target of rapamycin(mTOR)signaling is one of the most crucial intrinsic regenerative pathways that drive axonal regeneration and sprouting in various CNS injuries.In this review,we will discuss the recent findings and highlight the critical roles of mTOR pathway in axon regeneration in different types of CNS injury.Importantly,we will demonstrate that the reactivation of this regenerative pathway can be achieved by blocking the key mTOR signaling components such as phosphatase and tensin homolog(PTEN).Given that multiple mTOR signaling components are endogenous inhibitory factors of this pathway,we will discuss the promising potential of RNA-based therapeutics which are particularly suitable for this purpose,and the fact that they have attracted substantial attention recently after the success of coronavirus disease 2019 vaccination.To specifically tackle the blood-brain barrier issue,we will review the current technology to deliver these RNA therapeutics into the brain with a focus on nanoparticle technology.We will propose the clinical application of these RNA-mediated therapies in combination with the brain-targeted drug delivery approach against mTOR signaling components as an effective and feasible therapeutic strategy aiming to enhance axonal regeneration for functional recovery after CNS injury.
文摘This case report investigates an uncommon occurrence of drug induced acute liver injury directly associated with the administration of levetiracetam in a patient following traumatic brain injury.
文摘Antiepileptic drugs (AEDs), have demonstrated efficacy treating a number of acute conditions, encompassing a broad range of symptoms and syndromes, in addition to being first-line treatment for epilepsy. Clinically, since their inception, AEDs have been used off-label for acute and chronic medical conditions, both as primary and as adjuvant therapies. In this review, we describe the observed clinical effectiveness of AEDs across a set of commonly encountered acute conditions in the general hospital: traumatic brain injury, pain, alcohol withdrawal. In describing the individual benefits and usages of specific agents, the applicability of these agents to other common neuropsychiatric conditions may be further explored.
基金supported by the National Natural Science Foundation of China,Nos.82171363,82371381(to PL),82171458(to XJ)Key Research and Development Project of Shaa nxi Province,Nos.2024SF-YBXM-404(to KY)。
文摘Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field.
基金funded by the Key Project of Gansu Province, No.2GS054-A43-014-19
文摘One hundred patients with focal epilepsy were recruited for the present study and their seizures controlled with antiepileptic drugs. The patients then orally received a capsule of tall gastrodis tuber powder, a traditional Chinese drug, and underwent single photon emission computed tomography, long-term electroencephalogram, and CT/MRI. Blood drug levels were monitored throughout the study. Before treatment with tall gastrodis tuber, 35 of the 100 cases had abnormal CT/MRI scans; 79 cases had abnormal single photon emission computed tomography images; 86 cases had abnormal electroencephalogram; and a total of 146 abnormal perfusion foci were observed across the 100 subjects. After treatment, the number of patients with normal single photon emission computed tomography images increased by 12; normal electroencephalogram was observed in an additional 27 cases and the number of patients with epileptiform discharge decreased by 29 (34% of 86); the total number of abnormal perfusion foci decreased by 52 (36%) and changes in abnormal loci were visible in 65 patients. These changes indicate that the administration of tall gastrodis tuber in combination with antiepileptic drugs repairs abnormal perfusion foci in patients with focal epilepsy Our results demonstrate that traditional Chinese drugs can repair abnormal perfusion foci and, as such, are a promising new pathway in the treatment of focal epilepsy.
基金supported by a grant from the Vice Chancellor of Research at Kerman Medical University
文摘immunomodulary drug Setarud, which is composed of herbal extracts including Rosa canina, Urtica dioica and Tanacetum vulgare, supplemented with selenium exhibits anti-inflammatory and anti-oxidant properties. Therefore, we hypothesized that Setarud will have a neuroprotective effect against ischemic cerebral injury. To validate this hypothesis, rats were intraperitoneally administered with 0.66 mL/kg Setarud for 30 minutes after middle cerebral artery occlusion. Triphenyltetrazolium chloride staining showed that Setarud could reduce cerebral infarct volume of rats subjected to cerebral ischemia. Transmission electron microscopy and hematoxylin-eosin staining results showed that Setarud could alleviate the degenerative changes in cortical neurons of rats with cerebral ischemia. The inclined plate test and prehensile test showed that Setarud could significantly improve the motor function of rats with cerebral ischemia. These findings suggest that Setarud shows neuroprotective effects against ischemic brain injury.