Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)...Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)have shown potential for brain injury repair in central nervous system diseases.In this study,we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism.Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits,enhanced blood-brain barrier integrity,and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage.Additionally,hiPSC-NSC-Exos decreased immune cell infiltration,activated astrocytes,and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1,macrophage inflammatory protein-1α,and tumor necrosis factor-αpost-intracerebral hemorrhage,thereby improving the inflammatory microenvironment.RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion,thereby improving blood-brain barrier integrity.Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects.In summary,our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity,in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.展开更多
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno...β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
This study used electroacupuncture at Renzhong (DU26) and Baihui (DU20) in a rat model of cerebral ischemia/reperfusion injury. Neurological deficit scores, western blotting, and reverse transcription-PCR results ...This study used electroacupuncture at Renzhong (DU26) and Baihui (DU20) in a rat model of cerebral ischemia/reperfusion injury. Neurological deficit scores, western blotting, and reverse transcription-PCR results demonstrated that electroacupuncture markedly reduced neurological deficits, decreased corpus striatum aquaporin-4 protein and mRNA expression, and relieved damage to the blood-brain barrier in a rat model of cerebral ischemia/reperfusion injury. These results suggest that electroacupuncture most likely protects the blood-brain barrier by regulating aquaporin-4 expression following cerebral ischemia/reperfusion injury.展开更多
This study aimed to investigate aquaporin 4 expression and the ultrastructure of the blood-brain barrier at 2-72 hours following cerebral contusion injury, and correlate these changes to the formation of brain edema. ...This study aimed to investigate aquaporin 4 expression and the ultrastructure of the blood-brain barrier at 2-72 hours following cerebral contusion injury, and correlate these changes to the formation of brain edema. Results revealed that at 2 hours after cerebral contusion and laceration injury, aquaporin 4 expression significantly increased, brain water content and blood-brain barrier permeability increased, and the number of pinocytotic vesicles in cerebral microvascular endothelia cells increased. In addition, the mitochondrial accumulation was observed. As contusion and laceration injury became aggravated, aquaporin 4 expression continued to increase, brain water content and blood-brain barrier permeability gradually increased, brain capillary endothelial cells and astrocytes swelled, and capillary basement membrane injury gradually increased. The above changes were most apparent at 12 hours after injury, after which they gradually attenuated. Aquaporin 4 expression positively correlated with brain water content and the blood-brain barrier index. Our experimental findings indicate that increasing aquaporin 4 expression and blood-brain barrier permeability after cerebral contusion and laceration injury in humans is involved in the formation of brain edema.展开更多
Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB le...Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis.展开更多
Aquaporin-4 (AQP-4), a water-channel protein,is highly expressed in the brain, which is important ele- ments in the formation of brain edema and plays an important role in the rapid transmembrane transport. AQP-4 ex...Aquaporin-4 (AQP-4), a water-channel protein,is highly expressed in the brain, which is important ele- ments in the formation of brain edema and plays an important role in the rapid transmembrane transport. AQP-4 ex- pression up-regulates after ischemia-reperfusion injury in rats, making the astrocytic endfeet swelling, with the con- sequence of the injury of blood-brain barrier(BBB) , increasing the permeability of BBB, render too much water in the blood flow to the brain parenchyma, which results in cytotoxic edema, disordering the stability of the central nervous system. In addintion, the increased permeability of BBB is one of the important reasons for the cerebral stroke, therefore, it is essential that research the relationship between AQP-4 with BBB further and restore the blood-brain barrier injury be a new strategy for the prevention and treatment of stroke, worthy of further research.展开更多
Cromakalim,an adenosine triphosphate-sensitive potassium channel opener,exhibits protective effects on cerebral ischemia/reperfusion injury.However,there is controversy as to whether this effect is associated with aqu...Cromakalim,an adenosine triphosphate-sensitive potassium channel opener,exhibits protective effects on cerebral ischemia/reperfusion injury.However,there is controversy as to whether this effect is associated with aquaporin-4 and blood-brain barrier permeability.Immunohistochemistry results show that preventive administration of cromakalim decreased aquaporin-4 and IgG protein expression in rats with ischemia/reperfusion injury;it also reduced blood-brain barrier permeability,and alleviated brain edema,ultimately providing neuroprotection.展开更多
The aim of this study was to investigate the possible beneficial role of telmisartan in cerebral edema after traumatic brain injury(TBI) and the potential mechanisms related to the nucleotide-binding oligomerization...The aim of this study was to investigate the possible beneficial role of telmisartan in cerebral edema after traumatic brain injury(TBI) and the potential mechanisms related to the nucleotide-binding oligomerization domain(NOD)-like receptor(NLR) pyrin domain-containing 3(NLRP3) inflammasome activation. TBI model was established by cold-induced brain injury. Male C57BL/6 mice were randomly assigned into 3, 6, 12, 24, 48 and 72 h survival groups to investigate cerebral edema development with time and received 0, 5, 10, 20 and 40 mg/kg telmisartan by oral gavage, 1 h prior to TBI to determine the efficient anti-edemic dose. The therapeutic window was identified by post-treating 30 min, 1 h, 2 h and 4 h after TBI. Blood-brain barrier(BBB) integrity, the neurological function and histological injury were assessed, at the same time, the m RNA and protein expression levels of NLRP3 inflammasome, IL-1β and IL-18 concentrations in peri-contused brain tissue were measured 24 h post TBI. The results showed that the traumatic cerebral edema occurred from 6 h, reached the peak at 24 h and recovered to the baseline 72 h after TBI. A single oral dose of 5, 10 and 20 mg/kg telmisartan could reduce cerebral edema. Post-treatment up to 2 h effectively limited the edema development. Furthermore, prophylactic administration of telmisartan markedly inhibited BBB impairment, NLRP3, apoptotic speck-containing protein(ASC) and Caspase-1 activation, as well as IL-1β and IL-18 maturation, subsequently improved the neurological outcomes. In conclusion, telmisartan can reduce traumatic cerebral edema by inhibiting the NLRP3 inflammasome-regulated IL-1β and IL-18 accumulation.展开更多
Gelatinases matrix metalloproteinase-2 and matrix metalloproteinase-9 have been shown to mediate claudin-5 and occludin degradation, and play an important regulatory role in blood-brain barrier permeability. This stud...Gelatinases matrix metalloproteinase-2 and matrix metalloproteinase-9 have been shown to mediate claudin-5 and occludin degradation, and play an important regulatory role in blood-brain barrier permeability. This study established a rat model of 1.5-hour middle cerebral artery occlusion with reperfusion. Protein expression levels of claudin-5 and occludin gradually decreased in the early stage of reperfusion, which corresponded to the increase of the gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9. In addition, rats that received treatment with matrix metalloproteinase inhibitor N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpenthanoyl]-L- tryptophan methylamide (GM6001) showed a significant reduction in Evans blue leakage and an inhibition of claudin-5 and occludin protein degradation in striatal tissue. These data indicate that matrix metalloproteinase-2 and matrix metalloproteinase-9-mediated claudin-5 and occludin degradation is an important reason for blood-brain barrier leakage in the early stage of reperfusion. The leakage of the blood-brain barrier was present due to gelatinases-mediated degradation of claudin-5 and occludin proteins. We hypothesized that the timely closure of the structural component of the blood-brain barrier (tight junction proteins) is of importance.展开更多
A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue.To overcome this problem,researche...A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue.To overcome this problem,researchers have begun to focus on nanocarriers and other brain-targeting drug delivery systems.In this review,we summarize the epidemiology,basic pathophysiology,current clinical treatment,the establishment of models,and the evaluation indicators that are commonly used for traumatic brain injury.We also report the current status of traumatic brain injury when treated with nanocarriers such as liposomes and vesicles.Nanocarriers can overcome a variety of key biological barriers,improve drug bioavailability,increase intracellular penetration and retention time,achieve drug enrichment,control drug release,and achieve brain-targeting drug delivery.However,the application of nanocarriers remains in the basic research stage and has yet to be fully translated to the clinic.展开更多
BACKGROUND: Ischemic cerebrovascular disease causes injury to the blood-brain barrier. The occurrence of brain edema is associated with aquaporin expression following cerebral ischemia/reperfusion. OBJECTIVE: To ana...BACKGROUND: Ischemic cerebrovascular disease causes injury to the blood-brain barrier. The occurrence of brain edema is associated with aquaporin expression following cerebral ischemia/reperfusion. OBJECTIVE: To analyze the correlation of aquaporin-4 expression to brain edema and blood-brain barrier permeability in brain tissues of rat models of ischemia/reperfusion. DESIGN, TIME AND SETTING: The randomized control experiment was performed at the Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, China from December 2006 to October 2007. MATERIALS: A total of 112 adult, male, Sprague-Dawley rats, weighing 220-250 g, were used to establish rat models of middle cerebral artery occlusion and reperfusion by the suture method. Rabbit anti-aquaporin-4 (Santa Cruz, USA) and Evans blue (Sigma, USA) were used to analyze the tissue. METHODS: The rats were randomized into sham-operated (n = 16) and ischemia/reperfusion (n = 96) groups. There were 6 time points in the ischemia/reperfusion group, comprising 4, 6, 12, 24, 48, and 72 hours after reperfusion, with 16 rats for each time point. Rat models in the sham-operated group at 4 hours after surgery and rat models in the ischemia/reperfusion group at different time points were equally and randomly assigned into 4 different subgroups. MAIN OUTCOME MEASURES: Brain water content on the ischemic side and the control side was measured using the dry-wet weight method. Blood-brain barrier function was determined by Evans Blue. Aquaporin-4 expression surrounding the ischemic focus, as well as the correlation of aquaporin-4 expression with brain water content and Evans blue staining, were measured using immunohistochemistry and Western blot analysis. RESULTS: Brain water content on the ischemic side significantly increased at 12 hours after reperfusion, reached a peak at 48 hours, and was still high at 72 hours. Brain water content was greater on the ischemic hemispheres, compared with the control hemispheres at 6, 12, 24, 48, and 72 hours after reperfusion, as well as both hemispheres in the sham-operated group (P 〈 0.05). Evans blue content significantly increased on the ischemic side at 4 hours after ischemia/reperfusion, and reached a peak at 48 hours. Evans blue content was greater on the ischemic hemispheres, compared with the control hemispheres at various time points, as well as both hemispheres in the sham-operated group (P 〈 0.05). Aquaporin-4-positive cells were detected in the cortex and hippocampus, surrounding the ischemic penumbra focus, at 4-6 hours after ischemia/reperfusion. The number of positive cells significantly increased at 12 hours and reached a peak at 48-72 hours. Aquaporin-4 was, however, weakly expressed in the control hemispheres and the sham-operated group. The absorbance ratio of aquaporin-4 to β-actin was greater at 12, 24, 48, and 72 hours following cerebral ischemia/reperfusion, compared with the sham-operated group (P 〈 0.05). Aquaporin-4 expression positively correlated to brain water content and Evans blue staining following cerebral ischemia/reperfusion (r1 = 0.68, r2 = 0.81, P 〈 0.05). CONCLUSION: Aquaporin-4 is highly expressed in brain tissues, participates in the occurrence of ischemic brain edema, and is positively correlated to blood-brain barrier permeability following cerebral ischemia/reperfusion.展开更多
Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial ac...Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.展开更多
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
Urolithin A(UA)is a natural metabolite produced from polyphenolics in foods such as pomegranates,berries,and nuts.UA is neuroprotective against Parkinson’s disease,Alzheimer’s disease,and cerebral hemorrhage.However...Urolithin A(UA)is a natural metabolite produced from polyphenolics in foods such as pomegranates,berries,and nuts.UA is neuroprotective against Parkinson’s disease,Alzheimer’s disease,and cerebral hemorrhage.However,its effect against traumatic brain injury remains unknown.In this study,we established adult C57BL/6J mouse models of traumatic brain injury by controlled cortical impact and then intraperitoneally administered UA.We found that UA greatly reduced brain edema;increased the expression of tight junction proteins in injured cortex;increased the immunopositivity of two neuronal autophagy markers,microtubule-associated protein 1A/B light chain 3A/B(LC3)and p62;downregulated protein kinase B(Akt)and mammalian target of rapamycin(mTOR),two regulators of the phosphatidylinositol 3-kinase(PI3K)/Akt/mTOR signaling pathway;decreased the phosphorylation levels of inhibitor of NFκB(IκB)kinase alpha(IKKα)and nuclear factor kappa B(NFκB),two regulators of the neuroinflammation-related Akt/IKK/NFκB signaling pathway;reduced blood-brain barrier permeability and neuronal apoptosis in injured cortex;and improved mouse neurological function.These findings suggest that UA may be a candidate drug for the treatment of traumatic brain injury,and its neuroprotective effects may be mediated by inhibition of the PI3K/Akt/mTOR and Akt/IKK/NFκB signaling pathways,thus reducing neuroinflammation and enhancing autophagy.展开更多
BACKGROUND: Previous studies of cerebral ischemia have used young animals, with an ischemic time greater than 5 minutes (safe time limit). Despite an increased understanding of neuronal apoptosis, it remains uncert...BACKGROUND: Previous studies of cerebral ischemia have used young animals, with an ischemic time greater than 5 minutes (safe time limit). Despite an increased understanding of neuronal apoptosis, it remains uncertain whether brief cerebral ischemic events of 5 minutes or less damage brain tissue in elderly rodents. OBJECTIVE: To investigate the effects of transient cerebral ischemia (5 minutes)/reperfusion injury on brain cortical and hippocampal edema, aquaporin-4 (AQP-4) expression, and neuronal apoptosis in aged rats, and to compare ischemic sensitivity between cortex and hippocampus. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Institute of Cerebrovascular Disease, Qingdao University Medical School from April 2008 to March 2009. MATERIALS: Rabbit anti-AQP-4 polyclonal antibody, TUNEL kit, and SABC immunohistochemistry kit were purchased from Wuhan Boster Bioengineering, China. METHODS: A total of 160 healthy, male, aged 19-21 months, Wistar rats were randomly assigned to 4 groups: sham-surgery, and ischemia 1-, 3-, and 5-minute groups, with 40 rats in each group. The global cerebral ischemia model was established using the Pusinelli four-vessel occlusion, and the three cerebral ischemia groups were subdivided into reperfusion 12-hour, 1-, 2-, 3-, and 7-day subgroups, with 8 rats in each subgroup. The sham-surgery group was subjected to exposure of the first cervical bilateral alar foramina and bilateral common carotid arteries. MAIN OUTCOME MEASURES: The dry-wet weight assay was used to measure brain water content and histopathology of the cortex and hippocampus was observed following hematoxylin-eosin staining. In addition, cortical and hippocampal AQP-4 expression was detected by streptavidin-biotin complex immunohistochemistry, and neuronal apoptosis was detected by the TUNEL method. RESULTS: There was no significant difference in brain water content or AQP-4 expression in the cortex and hippocampus between ischemia 1- and 3-minute groups and the sham-surgery group or brain water content or AQP-4 expression in the cortex between ischemia 5-minute group and sham-surgery group (P 〉 0.05). However, brain water content and AQP-4 expression in the hippocampus after 5 minutes of cerebral ischemia were significantly increased compared with the sham-surgery group (P 〈 0.05 or P 〈 0.01). Several TUNEL-positive cells were observed in the cortex and hippocampus of the sham-surgery group and ischemia 1-minute group, as well as in the cortex of the ischemia 3-minute group. In addition, the number of apoptotic neurons in the hippocampus of ischemia 3-minute group and in the cortex and hippocampus of ischemia 5-minute group was significantly increased (P 〈 0.05 or P 〈 0.01 ). Neuronal apoptosis was increased after 12 hours of ischemia/reperfusion, and it reached a peak by 2 days (P 〈 0.01). CONCLUSION: Transient cerebral ischemia (5 minutes) resulted in increased hippocampal edema, AQP-4 expression, and neuronal apoptosis. Moreover, cerebral ischemia had a greater effect on neuronal apoptosis than brain edema or AQP-4 expression, and the hippocampus was more sensitive than the cortex.展开更多
The present study investigated the effects of the mitochondrial calcium uniporter inhibitor ruthenium red and the agonist spermine on cerebral edema in rats with cerebral ischemia reperfusion injury. Left middle cereb...The present study investigated the effects of the mitochondrial calcium uniporter inhibitor ruthenium red and the agonist spermine on cerebral edema in rats with cerebral ischemia reperfusion injury. Left middle cerebral artery occlusion (MCAO) was induced in rats using the suture method. Following 24 hours of ischemic reperfusion, neurological function scores of rats with MCAO, and rats pretreated with ruthenium red and spermine were significantly lower, however, water content of brain tissue, aquaporin 4 expression and immunoglobulin G (IgG) exudation were significantly higher than those of sham-operated rats. Compared with MCAO rats and spermine-treated rats, neurological function scores were considerably higher, and brain tissue water content, aquaporin 4 expression and IgG exudation decreased in ruthenium red-treated rats. These findings suggest that preventive application of the mitochondrial calcium uniporter inhibitor ruthenium red can significantly decrease aquaporin 4 and IgG expression, influence the permeability of the blood brain barrier, and thereby decrease the extent of cerebral edema.展开更多
AIM:To study the blood-brain barrier integrity,brain edema, animal behavior and ammonia plasma levels in prehepatic portal hypertensive rats with and without acute liver intoxication. METHODS:Adults male Wistar rats w...AIM:To study the blood-brain barrier integrity,brain edema, animal behavior and ammonia plasma levels in prehepatic portal hypertensive rats with and without acute liver intoxication. METHODS:Adults male Wistar rats were divided into four groups.Group Ⅰ:sham operation;Ⅱ:Prehepatic portal hypertension,produced by partial portal vein ligation;Ⅲ: Acetaminophen intoxication and Ⅳ:Prehepatic portal hypertension plus acetaminophen.Acetaminophen was administered to produce acute hepatic injury.Portal pressure,liver serum enzymes and ammonia plasma levels were determined.Brain cortex water content was registered and trypan blue was utilized to study blood brain barrier integrity.Reflexes and behavioral tests were recorded. RESULTS:Portal hypertension was significantly elevated in groups Ⅱ and Ⅳ.Uver enzymes and ammonia plasma levels were increased in groups Ⅱ,Ⅲ and Ⅳ.Prehepatic portal hypertension (group Ⅱ),acetaminophen intoxication (group Ⅲ) and both (group Ⅳ) had changes in the blood brain-barrier integrity (trypan blue) and hyperammonemia.Cortical edema was present in rats with acute hepatic injury in groups Ⅲ and Ⅳ.Behavioral test (rota rod) was altered in group Ⅳ. CONCLUSION:These results suggest the possibility of another pathway for cortical edema production because blood brain barrier was altered (vasogenic) and hyperammonemia was registered (oltotoxic).Group Ⅳ,with behavioral altered test,can be considered as a model for study at an early stage of portal-systemic encephalopathy.展开更多
Circular RNAs(circRNAs)are a new and large group of non-coding RNA molecules that are abundantly expressed in the central nervous system.However,very little is known about their roles in traumatic brain injury.In this...Circular RNAs(circRNAs)are a new and large group of non-coding RNA molecules that are abundantly expressed in the central nervous system.However,very little is known about their roles in traumatic brain injury.In this study,we firstly screened differentially expressed circ RNAs in normal and injured brain tissues of mice after traumatic brain injury.We found that the expression of circ Lphn3 was substantially decreased in mouse models of traumatic brain injury and in hemin-treated b End.3(mouse brain cell line)cells.After overexpressing circ Lphn3 in b End.3 cells,the expression of the tight junction proteins,ZO-1,ZO-2,and occludin,was upregulated,and the expression of mi R-185-5 p was decreased.In b End.3 cells transfected with mi R-185-5 p mimics,the expression of ZO-1 was decreased.Dual-luciferase reporter assays showed that circ Lphn3 bound to mi R-185-5 p,and that mi R-185-5 p bound to ZO-1.Additionally,circ Lphn3 overexpression attenuated the hemin-induced high permeability of the in vitro b End.3 cell model of the blood-brain barrier,while mi R-185-5 p transfection increased the permeability.These findings suggest that circ Lphn3,as a molecular sponge of mi R-185-5 p,regulates tight junction proteins'expression after traumatic brain injury,and it thereby improves the permeability of the blood-brain barrier.This study was approved by the Animal Care and Use Committee of Chongqing Medical University of China(approval No.2021-177)on March 22,2021.展开更多
基金supported by the National Natural Science Foundation of China,No.8227050826(to PL)Tianjin Science and Technology Bureau Foundation,No.20201194(to PL)Tianjin Graduate Research and Innovation Project,No.2022BKY174(to CW).
文摘Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)have shown potential for brain injury repair in central nervous system diseases.In this study,we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism.Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits,enhanced blood-brain barrier integrity,and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage.Additionally,hiPSC-NSC-Exos decreased immune cell infiltration,activated astrocytes,and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1,macrophage inflammatory protein-1α,and tumor necrosis factor-αpost-intracerebral hemorrhage,thereby improving the inflammatory microenvironment.RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion,thereby improving blood-brain barrier integrity.Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects.In summary,our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity,in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.
基金supported by the National Natural Science Foundation of China,Nos.82104158(to XT),31800887(to LY),31972902(to LY),82001422(to YL)China Postdoctoral Science Foundation,No.2020M683750(to LY)partially by Young Talent Fund of University Association for Science and Technology in Shaanxi Province of China,No.20200307(to LY).
文摘β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金funded by the National NaturalScience Foundation of China (Youth), No. 81001556
文摘This study used electroacupuncture at Renzhong (DU26) and Baihui (DU20) in a rat model of cerebral ischemia/reperfusion injury. Neurological deficit scores, western blotting, and reverse transcription-PCR results demonstrated that electroacupuncture markedly reduced neurological deficits, decreased corpus striatum aquaporin-4 protein and mRNA expression, and relieved damage to the blood-brain barrier in a rat model of cerebral ischemia/reperfusion injury. These results suggest that electroacupuncture most likely protects the blood-brain barrier by regulating aquaporin-4 expression following cerebral ischemia/reperfusion injury.
文摘This study aimed to investigate aquaporin 4 expression and the ultrastructure of the blood-brain barrier at 2-72 hours following cerebral contusion injury, and correlate these changes to the formation of brain edema. Results revealed that at 2 hours after cerebral contusion and laceration injury, aquaporin 4 expression significantly increased, brain water content and blood-brain barrier permeability increased, and the number of pinocytotic vesicles in cerebral microvascular endothelia cells increased. In addition, the mitochondrial accumulation was observed. As contusion and laceration injury became aggravated, aquaporin 4 expression continued to increase, brain water content and blood-brain barrier permeability gradually increased, brain capillary endothelial cells and astrocytes swelled, and capillary basement membrane injury gradually increased. The above changes were most apparent at 12 hours after injury, after which they gradually attenuated. Aquaporin 4 expression positively correlated with brain water content and the blood-brain barrier index. Our experimental findings indicate that increasing aquaporin 4 expression and blood-brain barrier permeability after cerebral contusion and laceration injury in humans is involved in the formation of brain edema.
基金supported by Research Start-up Funding of Shenzhen Traditional Chinese Medicine Hospital,No.2021-07(to FB)Sanming Project of Medicine in Shenzhen,No.SZZYSM 202111011(to XDQ and FB)+1 种基金Key Discipline Established by Zhejiang Province,Jiaxing City Jointly-Pain Medicine,No.2019-ss-ttyx(to LSX)Jiaxing Key Laboratory of Neurology and Pain Medicine,No.[2014]81(to LSX)。
文摘Ischemic stroke can cause blood-brain barrier(BBB)injury,which worsens brain damage induced by stroke.Abnormal expression of tight junction proteins in endothelial cells(ECs)can increase intracellular space and BBB leakage.Selective inhibition of mitogen-activated protein kinase,the negative regulatory substrate of mitogen-activated protein kinase phosphatase(MKP)-1,improves tight junction protein function in ECs,and genetic deletion of MKP-1 aggravates ischemic brain injury.However,whether the latter affects BBB integrity,and the cell type-specific mechanism underlying this process,remain unclear.In this study,we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke.We found that overexpression of MKP-1 in ECs reduced infarct volume,reduced the level of inflammatory factors interleukin-1β,interleukin-6,and chemokine C-C motif ligand-2,inhibited vascular injury,and promoted the recovery of sensorimotor and memory/cognitive function.Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase(ERK)1/2 and the downregulation of occludin expression.Finally,to investigate the mechanism by which MKP-1 exerted these functions in ECs,we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose,and pharmacologically inhibited the activity of MKP-1 and ERK1/2.Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death,cell monolayer leakage,and downregulation of occludin expression,and that inhibiting ERK1/2 can reverse these effects.In addition,co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2.These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2,thereby protecting the integrity of BBB,alleviating brain injury,and improving post-stroke prognosis.
文摘Aquaporin-4 (AQP-4), a water-channel protein,is highly expressed in the brain, which is important ele- ments in the formation of brain edema and plays an important role in the rapid transmembrane transport. AQP-4 ex- pression up-regulates after ischemia-reperfusion injury in rats, making the astrocytic endfeet swelling, with the con- sequence of the injury of blood-brain barrier(BBB) , increasing the permeability of BBB, render too much water in the blood flow to the brain parenchyma, which results in cytotoxic edema, disordering the stability of the central nervous system. In addintion, the increased permeability of BBB is one of the important reasons for the cerebral stroke, therefore, it is essential that research the relationship between AQP-4 with BBB further and restore the blood-brain barrier injury be a new strategy for the prevention and treatment of stroke, worthy of further research.
基金the Shandong Provincial Science and Technology Program,No. 2006GG202004
文摘Cromakalim,an adenosine triphosphate-sensitive potassium channel opener,exhibits protective effects on cerebral ischemia/reperfusion injury.However,there is controversy as to whether this effect is associated with aquaporin-4 and blood-brain barrier permeability.Immunohistochemistry results show that preventive administration of cromakalim decreased aquaporin-4 and IgG protein expression in rats with ischemia/reperfusion injury;it also reduced blood-brain barrier permeability,and alleviated brain edema,ultimately providing neuroprotection.
基金supported by grants from the National Natural Science Foundation of China(No.81270239)the Natural Science Foundation of Hubei Province of China(No.2014CFB200)
文摘The aim of this study was to investigate the possible beneficial role of telmisartan in cerebral edema after traumatic brain injury(TBI) and the potential mechanisms related to the nucleotide-binding oligomerization domain(NOD)-like receptor(NLR) pyrin domain-containing 3(NLRP3) inflammasome activation. TBI model was established by cold-induced brain injury. Male C57BL/6 mice were randomly assigned into 3, 6, 12, 24, 48 and 72 h survival groups to investigate cerebral edema development with time and received 0, 5, 10, 20 and 40 mg/kg telmisartan by oral gavage, 1 h prior to TBI to determine the efficient anti-edemic dose. The therapeutic window was identified by post-treating 30 min, 1 h, 2 h and 4 h after TBI. Blood-brain barrier(BBB) integrity, the neurological function and histological injury were assessed, at the same time, the m RNA and protein expression levels of NLRP3 inflammasome, IL-1β and IL-18 concentrations in peri-contused brain tissue were measured 24 h post TBI. The results showed that the traumatic cerebral edema occurred from 6 h, reached the peak at 24 h and recovered to the baseline 72 h after TBI. A single oral dose of 5, 10 and 20 mg/kg telmisartan could reduce cerebral edema. Post-treatment up to 2 h effectively limited the edema development. Furthermore, prophylactic administration of telmisartan markedly inhibited BBB impairment, NLRP3, apoptotic speck-containing protein(ASC) and Caspase-1 activation, as well as IL-1β and IL-18 maturation, subsequently improved the neurological outcomes. In conclusion, telmisartan can reduce traumatic cerebral edema by inhibiting the NLRP3 inflammasome-regulated IL-1β and IL-18 accumulation.
文摘Gelatinases matrix metalloproteinase-2 and matrix metalloproteinase-9 have been shown to mediate claudin-5 and occludin degradation, and play an important regulatory role in blood-brain barrier permeability. This study established a rat model of 1.5-hour middle cerebral artery occlusion with reperfusion. Protein expression levels of claudin-5 and occludin gradually decreased in the early stage of reperfusion, which corresponded to the increase of the gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9. In addition, rats that received treatment with matrix metalloproteinase inhibitor N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpenthanoyl]-L- tryptophan methylamide (GM6001) showed a significant reduction in Evans blue leakage and an inhibition of claudin-5 and occludin protein degradation in striatal tissue. These data indicate that matrix metalloproteinase-2 and matrix metalloproteinase-9-mediated claudin-5 and occludin degradation is an important reason for blood-brain barrier leakage in the early stage of reperfusion. The leakage of the blood-brain barrier was present due to gelatinases-mediated degradation of claudin-5 and occludin proteins. We hypothesized that the timely closure of the structural component of the blood-brain barrier (tight junction proteins) is of importance.
基金supported by the Natural Science Foundation of Beijing,No.L222126(to LD)。
文摘A major challenge for the efficient treatment of traumatic brain injury is the need for therapeutic molecules to cross the blood-brain barrier to enter and accumulate in brain tissue.To overcome this problem,researchers have begun to focus on nanocarriers and other brain-targeting drug delivery systems.In this review,we summarize the epidemiology,basic pathophysiology,current clinical treatment,the establishment of models,and the evaluation indicators that are commonly used for traumatic brain injury.We also report the current status of traumatic brain injury when treated with nanocarriers such as liposomes and vesicles.Nanocarriers can overcome a variety of key biological barriers,improve drug bioavailability,increase intracellular penetration and retention time,achieve drug enrichment,control drug release,and achieve brain-targeting drug delivery.However,the application of nanocarriers remains in the basic research stage and has yet to be fully translated to the clinic.
基金the Scientific Research Foundation of Health Department of Jiangsu Province of China, No. H9908the International Communication Program of Education Department of Jiangsu Province of China in 2007
文摘BACKGROUND: Ischemic cerebrovascular disease causes injury to the blood-brain barrier. The occurrence of brain edema is associated with aquaporin expression following cerebral ischemia/reperfusion. OBJECTIVE: To analyze the correlation of aquaporin-4 expression to brain edema and blood-brain barrier permeability in brain tissues of rat models of ischemia/reperfusion. DESIGN, TIME AND SETTING: The randomized control experiment was performed at the Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, China from December 2006 to October 2007. MATERIALS: A total of 112 adult, male, Sprague-Dawley rats, weighing 220-250 g, were used to establish rat models of middle cerebral artery occlusion and reperfusion by the suture method. Rabbit anti-aquaporin-4 (Santa Cruz, USA) and Evans blue (Sigma, USA) were used to analyze the tissue. METHODS: The rats were randomized into sham-operated (n = 16) and ischemia/reperfusion (n = 96) groups. There were 6 time points in the ischemia/reperfusion group, comprising 4, 6, 12, 24, 48, and 72 hours after reperfusion, with 16 rats for each time point. Rat models in the sham-operated group at 4 hours after surgery and rat models in the ischemia/reperfusion group at different time points were equally and randomly assigned into 4 different subgroups. MAIN OUTCOME MEASURES: Brain water content on the ischemic side and the control side was measured using the dry-wet weight method. Blood-brain barrier function was determined by Evans Blue. Aquaporin-4 expression surrounding the ischemic focus, as well as the correlation of aquaporin-4 expression with brain water content and Evans blue staining, were measured using immunohistochemistry and Western blot analysis. RESULTS: Brain water content on the ischemic side significantly increased at 12 hours after reperfusion, reached a peak at 48 hours, and was still high at 72 hours. Brain water content was greater on the ischemic hemispheres, compared with the control hemispheres at 6, 12, 24, 48, and 72 hours after reperfusion, as well as both hemispheres in the sham-operated group (P 〈 0.05). Evans blue content significantly increased on the ischemic side at 4 hours after ischemia/reperfusion, and reached a peak at 48 hours. Evans blue content was greater on the ischemic hemispheres, compared with the control hemispheres at various time points, as well as both hemispheres in the sham-operated group (P 〈 0.05). Aquaporin-4-positive cells were detected in the cortex and hippocampus, surrounding the ischemic penumbra focus, at 4-6 hours after ischemia/reperfusion. The number of positive cells significantly increased at 12 hours and reached a peak at 48-72 hours. Aquaporin-4 was, however, weakly expressed in the control hemispheres and the sham-operated group. The absorbance ratio of aquaporin-4 to β-actin was greater at 12, 24, 48, and 72 hours following cerebral ischemia/reperfusion, compared with the sham-operated group (P 〈 0.05). Aquaporin-4 expression positively correlated to brain water content and Evans blue staining following cerebral ischemia/reperfusion (r1 = 0.68, r2 = 0.81, P 〈 0.05). CONCLUSION: Aquaporin-4 is highly expressed in brain tissues, participates in the occurrence of ischemic brain edema, and is positively correlated to blood-brain barrier permeability following cerebral ischemia/reperfusion.
基金supported by Canadian Institutes for Health Research (CIHR)(to ADR and WW)Ontario Graduate Scholarship (to NOB)+2 种基金Alzheimer's Society of CanadaHeart and Stroke Foundation of Canada,CIHRthe Canadian Consortium for Neurodegeneration and Aging (CCNA)(to SNW)。
文摘Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
基金supported by the National Natural Science Foundation of China,Nos.81974189(to HLT),81801236(to QYG and LC),82001310(to DXY).
文摘Urolithin A(UA)is a natural metabolite produced from polyphenolics in foods such as pomegranates,berries,and nuts.UA is neuroprotective against Parkinson’s disease,Alzheimer’s disease,and cerebral hemorrhage.However,its effect against traumatic brain injury remains unknown.In this study,we established adult C57BL/6J mouse models of traumatic brain injury by controlled cortical impact and then intraperitoneally administered UA.We found that UA greatly reduced brain edema;increased the expression of tight junction proteins in injured cortex;increased the immunopositivity of two neuronal autophagy markers,microtubule-associated protein 1A/B light chain 3A/B(LC3)and p62;downregulated protein kinase B(Akt)and mammalian target of rapamycin(mTOR),two regulators of the phosphatidylinositol 3-kinase(PI3K)/Akt/mTOR signaling pathway;decreased the phosphorylation levels of inhibitor of NFκB(IκB)kinase alpha(IKKα)and nuclear factor kappa B(NFκB),two regulators of the neuroinflammation-related Akt/IKK/NFκB signaling pathway;reduced blood-brain barrier permeability and neuronal apoptosis in injured cortex;and improved mouse neurological function.These findings suggest that UA may be a candidate drug for the treatment of traumatic brain injury,and its neuroprotective effects may be mediated by inhibition of the PI3K/Akt/mTOR and Akt/IKK/NFκB signaling pathways,thus reducing neuroinflammation and enhancing autophagy.
基金Supported by: the Foundation Program of Shandong Heatth Department, No. 2001CAICKAF
文摘BACKGROUND: Previous studies of cerebral ischemia have used young animals, with an ischemic time greater than 5 minutes (safe time limit). Despite an increased understanding of neuronal apoptosis, it remains uncertain whether brief cerebral ischemic events of 5 minutes or less damage brain tissue in elderly rodents. OBJECTIVE: To investigate the effects of transient cerebral ischemia (5 minutes)/reperfusion injury on brain cortical and hippocampal edema, aquaporin-4 (AQP-4) expression, and neuronal apoptosis in aged rats, and to compare ischemic sensitivity between cortex and hippocampus. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Institute of Cerebrovascular Disease, Qingdao University Medical School from April 2008 to March 2009. MATERIALS: Rabbit anti-AQP-4 polyclonal antibody, TUNEL kit, and SABC immunohistochemistry kit were purchased from Wuhan Boster Bioengineering, China. METHODS: A total of 160 healthy, male, aged 19-21 months, Wistar rats were randomly assigned to 4 groups: sham-surgery, and ischemia 1-, 3-, and 5-minute groups, with 40 rats in each group. The global cerebral ischemia model was established using the Pusinelli four-vessel occlusion, and the three cerebral ischemia groups were subdivided into reperfusion 12-hour, 1-, 2-, 3-, and 7-day subgroups, with 8 rats in each subgroup. The sham-surgery group was subjected to exposure of the first cervical bilateral alar foramina and bilateral common carotid arteries. MAIN OUTCOME MEASURES: The dry-wet weight assay was used to measure brain water content and histopathology of the cortex and hippocampus was observed following hematoxylin-eosin staining. In addition, cortical and hippocampal AQP-4 expression was detected by streptavidin-biotin complex immunohistochemistry, and neuronal apoptosis was detected by the TUNEL method. RESULTS: There was no significant difference in brain water content or AQP-4 expression in the cortex and hippocampus between ischemia 1- and 3-minute groups and the sham-surgery group or brain water content or AQP-4 expression in the cortex between ischemia 5-minute group and sham-surgery group (P 〉 0.05). However, brain water content and AQP-4 expression in the hippocampus after 5 minutes of cerebral ischemia were significantly increased compared with the sham-surgery group (P 〈 0.05 or P 〈 0.01). Several TUNEL-positive cells were observed in the cortex and hippocampus of the sham-surgery group and ischemia 1-minute group, as well as in the cortex of the ischemia 3-minute group. In addition, the number of apoptotic neurons in the hippocampus of ischemia 3-minute group and in the cortex and hippocampus of ischemia 5-minute group was significantly increased (P 〈 0.05 or P 〈 0.01 ). Neuronal apoptosis was increased after 12 hours of ischemia/reperfusion, and it reached a peak by 2 days (P 〈 0.01). CONCLUSION: Transient cerebral ischemia (5 minutes) resulted in increased hippocampal edema, AQP-4 expression, and neuronal apoptosis. Moreover, cerebral ischemia had a greater effect on neuronal apoptosis than brain edema or AQP-4 expression, and the hippocampus was more sensitive than the cortex.
基金the National Natural Science Foundation of China, No. 30972855/C160203
文摘The present study investigated the effects of the mitochondrial calcium uniporter inhibitor ruthenium red and the agonist spermine on cerebral edema in rats with cerebral ischemia reperfusion injury. Left middle cerebral artery occlusion (MCAO) was induced in rats using the suture method. Following 24 hours of ischemic reperfusion, neurological function scores of rats with MCAO, and rats pretreated with ruthenium red and spermine were significantly lower, however, water content of brain tissue, aquaporin 4 expression and immunoglobulin G (IgG) exudation were significantly higher than those of sham-operated rats. Compared with MCAO rats and spermine-treated rats, neurological function scores were considerably higher, and brain tissue water content, aquaporin 4 expression and IgG exudation decreased in ruthenium red-treated rats. These findings suggest that preventive application of the mitochondrial calcium uniporter inhibitor ruthenium red can significantly decrease aquaporin 4 and IgG expression, influence the permeability of the blood brain barrier, and thereby decrease the extent of cerebral edema.
基金Supported by Grant #TB 56 from the University of Buenos Aires,Argentina
文摘AIM:To study the blood-brain barrier integrity,brain edema, animal behavior and ammonia plasma levels in prehepatic portal hypertensive rats with and without acute liver intoxication. METHODS:Adults male Wistar rats were divided into four groups.Group Ⅰ:sham operation;Ⅱ:Prehepatic portal hypertension,produced by partial portal vein ligation;Ⅲ: Acetaminophen intoxication and Ⅳ:Prehepatic portal hypertension plus acetaminophen.Acetaminophen was administered to produce acute hepatic injury.Portal pressure,liver serum enzymes and ammonia plasma levels were determined.Brain cortex water content was registered and trypan blue was utilized to study blood brain barrier integrity.Reflexes and behavioral tests were recorded. RESULTS:Portal hypertension was significantly elevated in groups Ⅱ and Ⅳ.Uver enzymes and ammonia plasma levels were increased in groups Ⅱ,Ⅲ and Ⅳ.Prehepatic portal hypertension (group Ⅱ),acetaminophen intoxication (group Ⅲ) and both (group Ⅳ) had changes in the blood brain-barrier integrity (trypan blue) and hyperammonemia.Cortical edema was present in rats with acute hepatic injury in groups Ⅲ and Ⅳ.Behavioral test (rota rod) was altered in group Ⅳ. CONCLUSION:These results suggest the possibility of another pathway for cortical edema production because blood brain barrier was altered (vasogenic) and hyperammonemia was registered (oltotoxic).Group Ⅳ,with behavioral altered test,can be considered as a model for study at an early stage of portal-systemic encephalopathy.
基金supported by the National Natural Science Foundation of ChinaNo.81771355+1 种基金the Natural Science Foundation of Chongqing of ChinaNo.CSTC2015jcyj A10096(both to ZBL)。
文摘Circular RNAs(circRNAs)are a new and large group of non-coding RNA molecules that are abundantly expressed in the central nervous system.However,very little is known about their roles in traumatic brain injury.In this study,we firstly screened differentially expressed circ RNAs in normal and injured brain tissues of mice after traumatic brain injury.We found that the expression of circ Lphn3 was substantially decreased in mouse models of traumatic brain injury and in hemin-treated b End.3(mouse brain cell line)cells.After overexpressing circ Lphn3 in b End.3 cells,the expression of the tight junction proteins,ZO-1,ZO-2,and occludin,was upregulated,and the expression of mi R-185-5 p was decreased.In b End.3 cells transfected with mi R-185-5 p mimics,the expression of ZO-1 was decreased.Dual-luciferase reporter assays showed that circ Lphn3 bound to mi R-185-5 p,and that mi R-185-5 p bound to ZO-1.Additionally,circ Lphn3 overexpression attenuated the hemin-induced high permeability of the in vitro b End.3 cell model of the blood-brain barrier,while mi R-185-5 p transfection increased the permeability.These findings suggest that circ Lphn3,as a molecular sponge of mi R-185-5 p,regulates tight junction proteins'expression after traumatic brain injury,and it thereby improves the permeability of the blood-brain barrier.This study was approved by the Animal Care and Use Committee of Chongqing Medical University of China(approval No.2021-177)on March 22,2021.