期刊文献+
共找到3,155篇文章
< 1 2 158 >
每页显示 20 50 100
Tumor necrosis factor-stimulated gene-6 ameliorates early brain injury after subarachnoid hemorrhage by suppressing NLRC4 inflammasome-mediated astrocyte pyroptosis 被引量:2
1
作者 Mingxiang Ding Lei Jin +4 位作者 Boyang Wei Wenping Cheng Wenchao Liu Xifeng Li Chuanzhi Duan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1064-1071,共8页
Subarachnoid hemorrhage is associated with high morbidity and mortality and lacks effective treatment.Pyroptosis is a crucial mechanism underlying early brain injury after subarachnoid hemorrhage.Previous studies have... Subarachnoid hemorrhage is associated with high morbidity and mortality and lacks effective treatment.Pyroptosis is a crucial mechanism underlying early brain injury after subarachnoid hemorrhage.Previous studies have confirmed that tumor necrosis factor-stimulated gene-6(TSG-6)can exert a neuroprotective effect by suppressing oxidative stress and apoptosis.However,no study to date has explored whether TSG-6 can alleviate pyroptosis in early brain injury after subarachnoid hemorrhage.In this study,a C57BL/6J mouse model of subarachnoid hemorrhage was established using the endovascular perforation method.Our results indicated that TSG-6 expression was predominantly detected in astrocytes,along with NLRC4 and gasdermin-D(GSDMD).The expression of NLRC4,GSDMD and its N-terminal domain(GSDMD-N),and cleaved caspase-1 was significantly enhanced after subarachnoid hemorrhage and accompanied by brain edema and neurological impairment.To explore how TSG-6 affects pyroptosis during early brain injury after subarachnoid hemorrhage,recombinant human TSG-6 or a siRNA targeting TSG-6 was injected into the cerebral ventricles.Exogenous TSG-6 administration downregulated the expression of NLRC4 and pyroptosis-associated proteins and alleviated brain edema and neurological deficits.Moreover,TSG-6 knockdown further increased the expression of NLRC4,which was accompanied by more severe astrocyte pyroptosis.In summary,our study revealed that TSG-6 provides neuroprotection against early brain injury after subarachnoid hemorrhage by suppressing NLRC4 inflammasome activation-induced astrocyte pyroptosis. 展开更多
关键词 ASTROCYTE early brain injury INFLAMMASOME NLRC4 PYROPTOSIS subarachnoid hemorrhage tumor necrosis factor-stimulated gene-6(TSG-6)
下载PDF
L_(1)-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection
2
作者 Chuandong Qin Yu Cao Liqun Meng 《Computers, Materials & Continua》 SCIE EI 2024年第5期1975-1994,共20页
Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for ga... Brain tumors come in various types,each with distinct characteristics and treatment approaches,making manual detection a time-consuming and potentially ambiguous process.Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes.Machine learning models have become key players in automating brain tumor detection.Gradient descent methods are the mainstream algorithms for solving machine learning models.In this paper,we propose a novel distributed proximal stochastic gradient descent approach to solve the L_(1)-Smooth Support Vector Machine(SVM)classifier for brain tumor detection.Firstly,the smooth hinge loss is introduced to be used as the loss function of SVM.It avoids the issue of nondifferentiability at the zero point encountered by the traditional hinge loss function during gradient descent optimization.Secondly,the L_(1) regularization method is employed to sparsify features and enhance the robustness of the model.Finally,adaptive proximal stochastic gradient descent(PGD)with momentum,and distributed adaptive PGDwithmomentum(DPGD)are proposed and applied to the L_(1)-Smooth SVM.Distributed computing is crucial in large-scale data analysis,with its value manifested in extending algorithms to distributed clusters,thus enabling more efficient processing ofmassive amounts of data.The DPGD algorithm leverages Spark,enabling full utilization of the computer’s multi-core resources.Due to its sparsity induced by L_(1) regularization on parameters,it exhibits significantly accelerated convergence speed.From the perspective of loss reduction,DPGD converges faster than PGD.The experimental results show that adaptive PGD withmomentumand its variants have achieved cutting-edge accuracy and efficiency in brain tumor detection.Frompre-trained models,both the PGD andDPGD outperform other models,boasting an accuracy of 95.21%. 展开更多
关键词 Support vector machine proximal stochastic gradient descent brain tumor detection distributed computing
下载PDF
Extended Deep Learning Algorithm for Improved Brain Tumor Diagnosis System
3
作者 M.Adimoolam K.Maithili +7 位作者 N.M.Balamurugan R.Rajkumar S.Leelavathy Raju Kannadasan Mohd Anul Haq Ilyas Khan ElSayed M.Tag El Din Arfat Ahmad Khan 《Intelligent Automation & Soft Computing》 2024年第1期33-55,共23页
At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns st... At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns still need enhancement,particularly accuracy,sensitivity,false positive and false negative,to improve the brain tumor prediction system symmetrically.Therefore,this work proposed an Extended Deep Learning Algorithm(EDLA)to measure performance parameters such as accuracy,sensitivity,and false positive and false negative rates.In addition,these iterated measures were analyzed by comparing the EDLA method with the Convolutional Neural Network(CNN)way further using the SPSS tool,and respective graphical illustrations were shown.The results were that the mean performance measures for the proposed EDLA algorithm were calculated,and those measured were accuracy(97.665%),sensitivity(97.939%),false positive(3.012%),and false negative(3.182%)for ten iterations.Whereas in the case of the CNN,the algorithm means accuracy gained was 94.287%,mean sensitivity 95.612%,mean false positive 5.328%,and mean false negative 4.756%.These results show that the proposed EDLA method has outperformed existing algorithms,including CNN,and ensures symmetrically improved parameters.Thus EDLA algorithm introduces novelty concerning its performance and particular activation function.This proposed method will be utilized effectively in brain tumor detection in a precise and accurate manner.This algorithm would apply to brain tumor diagnosis and be involved in various medical diagnoses aftermodification.If the quantity of dataset records is enormous,then themethod’s computation power has to be updated. 展开更多
关键词 brain tumor extended deep learning algorithm convolution neural network tumor detection deep learning
下载PDF
Intelligent Machine Learning Based Brain Tumor Segmentation through Multi-Layer Hybrid U-Net with CNN Feature Integration
4
作者 Sharaf J.Malebary 《Computers, Materials & Continua》 SCIE EI 2024年第4期1301-1317,共17页
Brain tumors are a pressing public health concern, characterized by their high mortality and morbidity rates.Nevertheless, the manual segmentation of brain tumors remains a laborious and error-prone task, necessitatin... Brain tumors are a pressing public health concern, characterized by their high mortality and morbidity rates.Nevertheless, the manual segmentation of brain tumors remains a laborious and error-prone task, necessitatingthe development of more precise and efficient methodologies. To address this formidable challenge, we proposean advanced approach for segmenting brain tumorMagnetic Resonance Imaging (MRI) images that harnesses theformidable capabilities of deep learning and convolutional neural networks (CNNs). While CNN-based methodshave displayed promise in the realm of brain tumor segmentation, the intricate nature of these tumors, markedby irregular shapes, varying sizes, uneven distribution, and limited available data, poses substantial obstacles toachieving accurate semantic segmentation. In our study, we introduce a pioneering Hybrid U-Net framework thatseamlessly integrates the U-Net and CNN architectures to surmount these challenges. Our proposed approachencompasses preprocessing steps that enhance image visualization, a customized layered U-Net model tailoredfor precise segmentation, and the inclusion of dropout layers to mitigate overfitting during the training process.Additionally, we leverage the CNN mechanism to exploit contextual information within brain tumorMRI images,resulting in a substantial enhancement in segmentation accuracy.Our experimental results attest to the exceptionalperformance of our framework, with accuracy rates surpassing 97% across diverse datasets, showcasing therobustness and effectiveness of our approach. Furthermore, we conduct a comprehensive assessment of ourmethod’s capabilities by evaluating various performance measures, including the sensitivity, Jaccard-index, andspecificity. Our proposed model achieved 99% accuracy. The implications of our findings are profound. Theproposed Hybrid U-Net model emerges as a highly promising diagnostic tool, poised to revolutionize brain tumorimage segmentation for radiologists and clinicians. 展开更多
关键词 brain tumor Hybrid U-Net CLAHE transfer learning MRI images
下载PDF
Targeting brain tumors with innovative nanocarriers:bridging the gap through the blood-brain barrier
5
作者 KARAN WADHWA PAYAL CHAUHAN +7 位作者 SHOBHIT KUMAR RAKESH PAHWA RAVINDER VERMA RAJAT GOYAL GOVIND SINGH ARCHANA SHARMA NEHA RAO DEEPAK KAUSHIK 《Oncology Research》 SCIE 2024年第5期877-897,共21页
Background:Glioblastoma multiforme(GBM)is recognized as the most lethal and most highly invasive tumor.The high likelihood of treatment failure arises fromthe presence of the blood-brain barrier(BBB)and stemcells arou... Background:Glioblastoma multiforme(GBM)is recognized as the most lethal and most highly invasive tumor.The high likelihood of treatment failure arises fromthe presence of the blood-brain barrier(BBB)and stemcells around GBM,which avert the entry of chemotherapeutic drugs into the tumormass.Objective:Recently,several researchers have designed novel nanocarrier systems like liposomes,dendrimers,metallic nanoparticles,nanodiamonds,and nanorobot approaches,allowing drugs to infiltrate the BBB more efficiently,opening up innovative avenues to prevail over therapy problems and radiation therapy.Methods:Relevant literature for this manuscript has been collected from a comprehensive and systematic search of databases,for example,PubMed,Science Direct,Google Scholar,and others,using specific keyword combinations,including“glioblastoma,”“brain tumor,”“nanocarriers,”and several others.Conclusion:This review also provides deep insights into recent advancements in nanocarrier-based formulations and technologies for GBM management.Elucidation of various scientific advances in conjunction with encouraging findings concerning the future perspectives and challenges of nanocarriers for effective brain tumor management has also been discussed. 展开更多
关键词 GLIOBLASTOMA brain tumor Blood-brain barrier Liposomes Metallic nanoparticles NANOCARRIERS
下载PDF
Multi-Level Parallel Network for Brain Tumor Segmentation
6
作者 Juhong Tie Hui Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期741-757,共17页
Accurate automatic segmentation of gliomas in various sub-regions,including peritumoral edema,necrotic core,and enhancing and non-enhancing tumor core from 3D multimodal MRI images,is challenging because of its highly... Accurate automatic segmentation of gliomas in various sub-regions,including peritumoral edema,necrotic core,and enhancing and non-enhancing tumor core from 3D multimodal MRI images,is challenging because of its highly heterogeneous appearance and shape.Deep convolution neural networks(CNNs)have recently improved glioma segmentation performance.However,extensive down-sampling such as pooling or stridden convolution in CNNs significantly decreases the initial image resolution,resulting in the loss of accurate spatial and object parts information,especially information on the small sub-region tumors,affecting segmentation performance.Hence,this paper proposes a novel multi-level parallel network comprising three different level parallel subnetworks to fully use low-level,mid-level,and high-level information and improve the performance of brain tumor segmentation.We also introduce the Combo loss function to address input class imbalance and false positives and negatives imbalance in deep learning.The proposed method is trained and validated on the BraTS 2020 training and validation dataset.On the validation dataset,ourmethod achieved a mean Dice score of 0.907,0.830,and 0.787 for the whole tumor,tumor core,and enhancing tumor core,respectively.Compared with state-of-the-art methods,the multi-level parallel network has achieved competitive results on the validation dataset. 展开更多
关键词 Convolution neural network brain tumor segmentation parallel network
下载PDF
Contrast Normalization Strategies in Brain Tumor Imaging:From Preprocessing to Classification
7
作者 Samar M.Alqhtani Toufique A.Soomro +3 位作者 Faisal Bin Ubaid Ahmed Ali Muhammad Irfan Abdullah A.Asiri 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1539-1562,共24页
Cancer-related to the nervous system and brain tumors is a leading cause of mortality in various countries.Magnetic resonance imaging(MRI)and computed tomography(CT)are utilized to capture brain images.MRI plays a cru... Cancer-related to the nervous system and brain tumors is a leading cause of mortality in various countries.Magnetic resonance imaging(MRI)and computed tomography(CT)are utilized to capture brain images.MRI plays a crucial role in the diagnosis of brain tumors and the examination of other brain disorders.Typically,manual assessment of MRI images by radiologists or experts is performed to identify brain tumors and abnormalities in the early stages for timely intervention.However,early diagnosis of brain tumors is intricate,necessitating the use of computerized methods.This research introduces an innovative approach for the automated segmentation of brain tumors and a framework for classifying different regions of brain tumors.The proposed methods consist of a pipeline with several stages:preprocessing of brain images with noise removal based on Wiener Filtering,enhancing the brain using Principal Component Analysis(PCA)to obtain well-enhanced images,and then segmenting the region of interest using the Fuzzy C-Means(FCM)clustering technique in the third step.The final step involves classification using the Support Vector Machine(SVM)classifier.The classifier is applied to various types of brain tumors,such as meningioma and pituitary tumors,utilizing the Contrast-Enhanced Magnetic Resonance Imaging(CE-MRI)database.The proposed method demonstrates significantly improved contrast and validates the effectiveness of the classification framework,achieving an average sensitivity of 0.974,specificity of 0.976,accuracy of 0.979,and a Dice Score(DSC)of 0.957.Additionally,this method exhibits a shorter processing time of 0.44 s compared to existing approaches.The performance of this method emphasizes its significance when compared to state-of-the-art methods in terms of sensitivity,specificity,accuracy,and DSC.To enhance the method further in the future,it is feasible to standardize the approach by incorporating a set of classifiers to increase the robustness of the brain classification method. 展开更多
关键词 brain tumor magnetic resonance imaging principal component analysis fuzzy c-clustering support vector machine
下载PDF
ARGA-Unet:Advanced U-net segmentation model using residual grouped convolution and attention mechanism for brain tumor MRI image segmentation
8
作者 Siyi XUN Yan ZHANG +7 位作者 Sixu DUAN Mingwei WANG Jiangang CHEN Tong TONG Qinquan GAO Chantong LAM Menghan HU Tao TAN 《虚拟现实与智能硬件(中英文)》 EI 2024年第3期203-216,共14页
Background Magnetic resonance imaging(MRI)has played an important role in the rapid growth of medical imaging diagnostic technology,especially in the diagnosis and treatment of brain tumors owing to its non invasive c... Background Magnetic resonance imaging(MRI)has played an important role in the rapid growth of medical imaging diagnostic technology,especially in the diagnosis and treatment of brain tumors owing to its non invasive characteristics and superior soft tissue contrast.However,brain tumors are characterized by high non uniformity and non-obvious boundaries in MRI images because of their invasive and highly heterogeneous nature.In addition,the labeling of tumor areas is time-consuming and laborious.Methods To address these issues,this study uses a residual grouped convolution module,convolutional block attention module,and bilinear interpolation upsampling method to improve the classical segmentation network U-net.The influence of network normalization,loss function,and network depth on segmentation performance is further considered.Results In the experiments,the Dice score of the proposed segmentation model reached 97.581%,which is 12.438%higher than that of traditional U-net,demonstrating the effective segmentation of MRI brain tumor images.Conclusions In conclusion,we use the improved U-net network to achieve a good segmentation effect of brain tumor MRI images. 展开更多
关键词 brain tumor MRI U-net SEGMENTATION Attention mechanism Deep learning
下载PDF
The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice
9
作者 Bo Zhao Mei Li +6 位作者 Bingyu Li Yanan Li Qianni Shen Jiabao Hou Yang Wu Lijuan Gu Wenwei Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2019-2026,共8页
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of... Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway. 展开更多
关键词 brain C1q/tumor necrosis factor-related protein-6 cerebral apoptosis diabetes inflammation ischemia/reperfusion injury NEURON NEUROPROTECTION oxidative damage Sirt1
下载PDF
Automated Brain Tumor Diagnosis Using Deep Residual U-Net Segmentation Model 被引量:1
10
作者 R.Poonguzhali Sultan Ahmad +4 位作者 P.Thiruvannamalai Sivasankar S.Anantha Babu Pranav Joshi Gyanendra Prasad Joshi Sung Won Kim 《Computers, Materials & Continua》 SCIE EI 2023年第1期2179-2194,共16页
Automated segmentation and classification of biomedical images act as a vital part of the diagnosis of brain tumors(BT).A primary tumor brain analysis suggests a quicker response from treatment that utilizes for impro... Automated segmentation and classification of biomedical images act as a vital part of the diagnosis of brain tumors(BT).A primary tumor brain analysis suggests a quicker response from treatment that utilizes for improving patient survival rate.The location and classification of BTs from huge medicinal images database,obtained from routine medical tasks with manual processes are a higher cost together in effort and time.An automatic recognition,place,and classifier process was desired and useful.This study introduces anAutomatedDeepResidualU-Net Segmentation with Classification model(ADRU-SCM)for Brain Tumor Diagnosis.The presentedADRUSCM model majorly focuses on the segmentation and classification of BT.To accomplish this,the presented ADRU-SCM model involves wiener filtering(WF)based preprocessing to eradicate the noise that exists in it.In addition,the ADRU-SCM model follows deep residual U-Net segmentation model to determine the affected brain regions.Moreover,VGG-19 model is exploited as a feature extractor.Finally,tunicate swarm optimization(TSO)with gated recurrent unit(GRU)model is applied as a classification model and the TSO algorithm effectually tunes theGRUhyperparameters.The performance validation of the ADRU-SCM model was tested utilizing FigShare dataset and the outcomes pointed out the better performance of the ADRU-SCM approach on recent approaches. 展开更多
关键词 brain tumor diagnosis image classification biomedical images image segmentation deep learning
下载PDF
Computer-Aided Diagnosis Model Using Machine Learning for Brain Tumor Detection and Classification 被引量:1
11
作者 M.Uvaneshwari M.Baskar 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1811-1826,共16页
The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring ... The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign tumors.The benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in death.Initial recognition of BT is highly significant to protecting the patient’s life.Generally,the BT can be identified through the magnetic resonance imaging(MRI)scanning technique.But the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the brain.Recently,ML has prevailed against standard image processing techniques.Several studies denote the superiority of machine learning(ML)techniques over standard techniques.Therefore,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)model.To accomplish the detection of brain tumor effectively,a Computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research manuscript.Initially,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull stripping.Next,mayfly optimization with the Kapur’s thresholding based segmentation process takes place.For feature extraction proposes,local diagonal extreme patterns(LDEP)are exploited.At last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification process.The accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research work.The experimental validation of the proposed model demonstrates its promising performance over other existing methods. 展开更多
关键词 brain tumor machine learning SEGMENTATION computer-aided diagnosis skull stripping
下载PDF
Transformation of MRI Images to Three-Level Color Spaces for Brain Tumor Classification Using Deep-Net
12
作者 Fadl Dahan 《Intelligent Automation & Soft Computing》 2024年第2期381-395,共15页
In the domain ofmedical imaging,the accurate detection and classification of brain tumors is very important.This study introduces an advanced method for identifying camouflaged brain tumors within images.Our proposed ... In the domain ofmedical imaging,the accurate detection and classification of brain tumors is very important.This study introduces an advanced method for identifying camouflaged brain tumors within images.Our proposed model consists of three steps:Feature extraction,feature fusion,and then classification.The core of this model revolves around a feature extraction framework that combines color-transformed images with deep learning techniques,using the ResNet50 Convolutional Neural Network(CNN)architecture.So the focus is to extract robust feature fromMRI images,particularly emphasizingweighted average features extracted fromthe first convolutional layer renowned for their discriminative power.To enhance model robustness,we introduced a novel feature fusion technique based on the Marine Predator Algorithm(MPA),inspired by the hunting behavior of marine predators and has shown promise in optimizing complex problems.The proposed methodology can accurately classify and detect brain tumors in camouflage images by combining the power of color transformations,deep learning,and feature fusion via MPA,and achieved an accuracy of 98.72%on a more complex dataset surpassing the existing state-of-the-art methods,highlighting the effectiveness of the proposed model.The importance of this research is in its potential to advance the field ofmedical image analysis,particularly in brain tumor diagnosis,where diagnoses early,and accurate classification are critical for improved patient results. 展开更多
关键词 Camouflage brain tumor image classification weighted convolutional features CNN ResNet50
下载PDF
Salp Swarm Algorithm with Multilevel Thresholding Based Brain Tumor Segmentation Model
13
作者 Hanan T.Halawani 《Computers, Materials & Continua》 SCIE EI 2023年第3期6775-6788,共14页
Biomedical image processing acts as an essential part of severalmedical applications in supporting computer aided disease diagnosis. MagneticResonance Image (MRI) is a commonly utilized imaging tool used tosave glioma... Biomedical image processing acts as an essential part of severalmedical applications in supporting computer aided disease diagnosis. MagneticResonance Image (MRI) is a commonly utilized imaging tool used tosave glioma for clinical examination. Biomedical image segmentation plays avital role in healthcare decision making process which also helps to identifythe affected regions in the MRI. Though numerous segmentation models areavailable in the literature, it is still needed to develop effective segmentationmodels for BT. This study develops a salp swarm algorithm with multi-levelthresholding based brain tumor segmentation (SSAMLT-BTS) model. Thepresented SSAMLT-BTS model initially employs bilateral filtering based onnoise removal and skull stripping as a pre-processing phase. In addition,Otsu thresholding approach is applied to segment the biomedical imagesand the optimum threshold values are chosen by the use of SSA. Finally,active contour (AC) technique is used to identify the suspicious regions in themedical image. A comprehensive experimental analysis of the SSAMLT-BTSmodel is performed using benchmark dataset and the outcomes are inspectedin many aspects. The simulation outcomes reported the improved outcomesof the SSAMLT-BTS model over recent approaches with maximum accuracyof 95.95%. 展开更多
关键词 brain tumor segmentation noise removal multilevel thresholding healthcare PRE-PROCESSING
下载PDF
An Effective Diagnosis System for Brain Tumor Detection and Classification
14
作者 Ahmed A.Alsheikhy Ahmad S.Azzahrani +1 位作者 A.Khuzaim Alzahrani Tawfeeq Shawly 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2021-2037,共17页
A brain tumor is an excessive development of abnormal and uncontrolled cells in the brain.This growth is considered deadly since it may cause death.The brain controls numerous functions,such as memory,vision,and emoti... A brain tumor is an excessive development of abnormal and uncontrolled cells in the brain.This growth is considered deadly since it may cause death.The brain controls numerous functions,such as memory,vision,and emotions.Due to the location,size,and shape of these tumors,their detection is a challenging and complex task.Several efforts have been conducted toward improved detection and yielded promising results and outcomes.However,the accuracy should be higher than what has been reached.This paper presents a method to detect brain tumors with high accuracy.The method works using an image segmentation technique and a classifier in MATLAB.The utilized classifier is a SupportVector Machine(SVM).DiscreteWavelet Transform(DWT)and Principal Component Analysis(PCA)are also involved.A dataset from the Kaggle website is used to test the developed approach.The obtained results reached nearly 99.2%of accuracy.The paper provides a confusion matrix of applying the proposed approach to testing images and a comparative evaluation between the developed method and some works in the literature.This evaluation shows that the presented system outperforms other approaches regarding the accuracy,precision,and recall.This research discovered that the developed method is extremely useful in detecting brain tumors,given the high accuracy,precision,and recall results.The proposed system directs us to believe that bringing this kind of technology to physicians diagnosing brain tumors is crucial. 展开更多
关键词 brain tumor CLASSIFICATION support vector machine artificial intelligence image segmentation tumor detection
下载PDF
Classification of Brain Tumors Using Hybrid Feature Extraction Based on Modified Deep Learning Techniques
15
作者 Tawfeeq Shawly Ahmed Alsheikhy 《Computers, Materials & Continua》 SCIE EI 2023年第10期425-443,共19页
According to the World Health Organization(WHO),Brain Tumors(BrT)have a high rate of mortality across the world.The mortality rate,however,decreases with early diagnosis.Brain images,Computed Tomography(CT)scans,Magne... According to the World Health Organization(WHO),Brain Tumors(BrT)have a high rate of mortality across the world.The mortality rate,however,decreases with early diagnosis.Brain images,Computed Tomography(CT)scans,Magnetic Resonance Imaging scans(MRIs),segmentation,analysis,and evaluation make up the critical tools and steps used to diagnose brain cancer in its early stages.For physicians,diagnosis can be challenging and time-consuming,especially for those with little expertise.As technology advances,Artificial Intelligence(AI)has been used in various domains as a diagnostic tool and offers promising outcomes.Deep-learning techniques are especially useful and have achieved exquisite results.This study proposes a new Computer-Aided Diagnosis(CAD)system to recognize and distinguish between tumors and non-tumor tissues using a newly developed middleware to integrate two deep-learning technologies to segment brain MRI scans and classify any discovered tumors.The segmentation mechanism is used to determine the shape,area,diameter,and outline of any tumors,while the classification mechanism categorizes the type of cancer as slow-growing or aggressive.The main goal is to diagnose tumors early and to support the work of physicians.The proposed system integrates a Convolutional Neural Network(CNN),VGG-19,and Long Short-Term Memory Networks(LSTMs).A middleware framework is developed to perform the integration process and allow the system to collect the required data for the classification of tumors.Numerous experiments have been conducted on different five datasets to evaluate the presented system.These experiments reveal that the system achieves 97.98%average accuracy when the segmentation and classification functions were utilized,demonstrating that the proposed system is a powerful and valuable method to diagnose BrT early using MRI images.In addition,the system can be deployed in medical facilities to support and assist physicians to provide an early diagnosis to save patients’lives and avoid the high cost of treatments. 展开更多
关键词 brain cancer tumorS early diagnosis CNN VGG-19 LSTMs CT scans MRI MIDDLEWARE
下载PDF
Deep Learning-Enhanced Brain Tumor Prediction via Entropy-Coded BPSO in CIELAB Color Space
16
作者 Mudassir Khalil Muhammad Imran Sharif +3 位作者 Ahmed Naeem Muhammad Umar Chaudhry Hafiz Tayyab Rauf Adham E.Ragab 《Computers, Materials & Continua》 SCIE EI 2023年第11期2031-2047,共17页
Early detection of brain tumors is critical for effective treatment planning.Identifying tumors in their nascent stages can significantly enhance the chances of patient survival.While there are various types of brain ... Early detection of brain tumors is critical for effective treatment planning.Identifying tumors in their nascent stages can significantly enhance the chances of patient survival.While there are various types of brain tumors,each with unique characteristics and treatment protocols,tumors are often minuscule during their initial stages,making manual diagnosis challenging,time-consuming,and potentially ambiguous.Current techniques predominantly used in hospitals involve manual detection via MRI scans,which can be costly,error-prone,and time-intensive.An automated system for detecting brain tumors could be pivotal in identifying the disease in its earliest phases.This research applies several data augmentation techniques to enhance the dataset for diagnosis,including rotations of 90 and 180 degrees and inverting along vertical and horizontal axes.The CIELAB color space is employed for tumor image selection and ROI determination.Several deep learning models,such as DarkNet-53 and AlexNet,are applied to extract features from the fully connected layers,following the feature selection using entropy-coded Particle Swarm Optimization(PSO).The selected features are further processed through multiple SVM kernels for classification.This study furthers medical imaging with its automated approach to brain tumor detection,significantly minimizing the time and cost of a manual diagnosis.Our method heightens the possibilities of an earlier tumor identification,creating an avenue for more successful treatment planning and better overall patient outcomes. 展开更多
关键词 brain tumor deep learning feature extraction feature selection feature fusion transfer learning
下载PDF
Brain Tumor Diagnosis Using Sparrow Search Algorithm Based Deep Learning Model
17
作者 G.Ignisha Rajathi R.Ramesh Kumar +4 位作者 D.Ravikumar T.Joel Seifedine Kadry Chang-Won Jeong Yunyoung Nam 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1793-1806,共14页
Recently,Internet of Medical Things(IoMT)has gained considerable attention to provide improved healthcare services to patients.Since earlier diag-nosis of brain tumor(BT)using medical imaging becomes an essential task... Recently,Internet of Medical Things(IoMT)has gained considerable attention to provide improved healthcare services to patients.Since earlier diag-nosis of brain tumor(BT)using medical imaging becomes an essential task,auto-mated IoMT and cloud enabled BT diagnosis model can be devised using recent deep learning models.With this motivation,this paper introduces a novel IoMT and cloud enabled BT diagnosis model,named IoMTC-HDBT.The IoMTC-HDBT model comprises the data acquisition process by the use of IoMT devices which captures the magnetic resonance imaging(MRI)brain images and transmit them to the cloud server.Besides,adaptive windowfiltering(AWF)based image preprocessing is used to remove noise.In addition,the cloud server executes the disease diagnosis model which includes the sparrow search algorithm(SSA)with GoogleNet(SSA-GN)model.The IoMTC-HDBT model applies functional link neural network(FLNN),which has the ability to detect and classify the MRI brain images as normal or abnormal.Itfinds useful to generate the reports instantly for patients located in remote areas.The validation of the IoMTC-HDBT model takes place against BRATS2015 Challenge dataset and the experimental analysis is car-ried out interms of sensitivity,accuracy,and specificity.The experimentation out-come pointed out the betterment of the proposed model with the accuracy of 0.984. 展开更多
关键词 Internet of medical things healthcare brain tumor disease classification deep learning metaheuristics
下载PDF
A Novel Handcrafted with Deep Features Based Brain Tumor Diagnosis Model
18
作者 Abdul Rahaman Wahab Sait Mohamad Khairi Ishak 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2057-2070,共14页
In healthcare sector,image classification is one of the crucial problems that impact the quality output from image processing domain.The purpose of image classification is to categorize different healthcare images under... In healthcare sector,image classification is one of the crucial problems that impact the quality output from image processing domain.The purpose of image classification is to categorize different healthcare images under various class labels which in turn helps in the detection and management of diseases.Magnetic Resonance Imaging(MRI)is one of the effective non-invasive strate-gies that generate a huge and distinct number of tissue contrasts in every imaging modality.This technique is commonly utilized by healthcare professionals for Brain Tumor(BT)diagnosis.With recent advancements in Machine Learning(ML)and Deep Learning(DL)models,it is possible to detect the tumor from images automatically,using a computer-aided design.The current study focuses on the design of automated Deep Learning-based BT Detection and Classification model using MRI images(DLBTDC-MRI).The proposed DLBTDC-MRI techni-que aims at detecting and classifying different stages of BT.The proposed DLBTDC-MRI technique involves medianfiltering technique to remove the noise and enhance the quality of MRI images.Besides,morphological operations-based image segmentation approach is also applied to determine the BT-affected regions in brain MRI image.Moreover,a fusion of handcrafted deep features using VGGNet is utilized to derive a valuable set of feature vectors.Finally,Artificial Fish Swarm Optimization(AFSO)with Artificial Neural Network(ANN)model is utilized as a classifier to decide the presence of BT.In order to assess the enhanced BT classification performance of the proposed model,a comprehensive set of simulations was performed on benchmark dataset and the results were vali-dated under several measures. 展开更多
关键词 brain tumor medical imaging image classification handcrafted features deep learning parameter optimization
下载PDF
Treatment of radiation-induced brain injury with bisdemethoxycurcumin 被引量:4
19
作者 Yun-Qian Chang Gui-Juan Zhou +7 位作者 Hong-Mei Wen Duan-Qun He Chen-Lin Xu Ya-Rui Chen Yi-Hui Li Shuang-Xi Chen Zi-Jian Xiao Ming Xie 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期416-421,共6页
Radiation therapy is considered the most effective non-surgical treatment for brain tumors.However,there are no available treatments for radiation-induced brain injury.Bisdemethoxycurcumin(BDMC)is a demethoxy derivati... Radiation therapy is considered the most effective non-surgical treatment for brain tumors.However,there are no available treatments for radiation-induced brain injury.Bisdemethoxycurcumin(BDMC)is a demethoxy derivative of curcumin that has anti-proliferative,anti-inflammatory,and anti-oxidant properties.To determine whether BDMC has the potential to treat radiation-induced brain injury,in this study,we established a rat model of radiation-induced brain injury by administe ring a single 30-Gy vertical dose of irradiation to the whole brain,followed by intraperitoneal injection of 500μL of a 100 mg/kg BDMC solution every day for 5 successive weeks.Our res ults showed that BDMC increased the body weight of rats with radiation-induced brain injury,improved lea rning and memory,attenuated brain edema,inhibited astrocyte activation,and reduced oxidative stress.These findings suggest that BDMC protects against radiationinduced brain injury. 展开更多
关键词 ASTROCYTES BISDEMETHOXYCURCUMIN brain edema brain tumor CURCUMIN learning and memory neuronal injury oxidative stress radiation therapy radiation-induced brain injury
下载PDF
RBEBT: A ResNet-Based BA-ELM for Brain Tumor Classification 被引量:1
20
作者 Ziquan Zhu Muhammad Attique Khan +1 位作者 Shui-Hua Wang Yu-Dong Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第1期101-111,共11页
Brain tumor refers to the formation of abnormal cells in the brain.It can be divided into benign and malignant.The main diagnostic methods for brain tumors are plain X-ray film,Magnetic resonance imaging(MRI),and so o... Brain tumor refers to the formation of abnormal cells in the brain.It can be divided into benign and malignant.The main diagnostic methods for brain tumors are plain X-ray film,Magnetic resonance imaging(MRI),and so on.However,these artificial diagnosis methods are easily affected by external factors.Scholars have made such impressive progress in brain tumors classification by using convolutional neural network(CNN).However,there are still some problems:(i)There are many parameters in CNN,which require much calculation.(ii)The brain tumor data sets are relatively small,which may lead to the overfitting problem in CNN.In this paper,our team proposes a novel model(RBEBT)for the automatic classification of brain tumors.We use fine-tuned ResNet18 to extract the features of brain tumor images.The RBEBT is different from the traditional CNN models in that the randomized neural network(RNN)is selected as the classifier.Meanwhile,our team selects the bat algorithm(BA)to opti7mize the parameters of RNN.We use fivefold cross-validation to verify the superiority of the RBEBT.The accuracy(ACC),specificity(SPE),precision(PRE),sensitivity(SEN),and F1-score(F1)are 99.00%,95.00%,99.00%,100.00%,and 100.00%.The classification performance of the RBEBT is greater than 95%,which can prove that the RBEBT is an effective model to classify brain tumors. 展开更多
关键词 brain tumor randomized neural network bat algorithm ResNet
下载PDF
上一页 1 2 158 下一页 到第
使用帮助 返回顶部