Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature hi...Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature higher than 1300℃ and for to 10 h. Microwave assisted sintering could reduce the activation energy and enhance the diffu- sion rate, thus greatly improved the sintering. Moreover, the influence of Si3N4 content on phase formation, morphol- ogy, absorption, and quantum efficiency, and photoluminescence properties of phosphors were studied. As a result, the Ba3Si6OI2N2:Eu^2+ samples sintered by microwave assisted sintering method have a higher phase purity and photo- luminescence intensity under ultraviolet excitation as compared with samples sintered in the conventional tube furnace The proposed method is a potential preparation method for the oxynitride phosphors with strong photoluminescence and high phase purity.展开更多
Walking assistance can be realized by active and passive robotic walkers when their users walk on even roads.However,fast signal processing and real-time control are necessary for active robotic walkers when the users...Walking assistance can be realized by active and passive robotic walkers when their users walk on even roads.However,fast signal processing and real-time control are necessary for active robotic walkers when the users walk on slopes,while assistive forces cannot be provided by passive robotic walkers when the users walk uphill.A robotic walker with an active-passive hybrid actuator(APHA)was developed in this study.The APHA,which consists of a rotary magnetorheological(MR)brake and a DC motor,can provide mobility assistance to users walking both uphill and downhill via the cooperative operation of the MR brake and DC motor.The rotary MR brake was designed with a T-shaped configuration,and the system was optimized to minimize the brake volume.Prototypes of the APHA and robotic walker were constructed.A control algorithm for the robotic walker was developed based on the characteristics of the APHA and the structure of the robotic walker.The mechanical properties of the APHA were characterized,and experiments were conducted to evaluate the mobility assistance supplied by the robotic walker on different roads.The results show that the APHA can meet the requirements of the robotic walker,and suitable assistive forces can be provided by the robotic walker,which has a simple mechanical structure and control method.展开更多
文摘Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature higher than 1300℃ and for to 10 h. Microwave assisted sintering could reduce the activation energy and enhance the diffu- sion rate, thus greatly improved the sintering. Moreover, the influence of Si3N4 content on phase formation, morphol- ogy, absorption, and quantum efficiency, and photoluminescence properties of phosphors were studied. As a result, the Ba3Si6OI2N2:Eu^2+ samples sintered by microwave assisted sintering method have a higher phase purity and photo- luminescence intensity under ultraviolet excitation as compared with samples sintered in the conventional tube furnace The proposed method is a potential preparation method for the oxynitride phosphors with strong photoluminescence and high phase purity.
基金Supported by National Natural Science Foundation of China(Grant No.U1813222)Hebei Provincial Natural Science Foundation of China(Grant No.E2018202316).
文摘Walking assistance can be realized by active and passive robotic walkers when their users walk on even roads.However,fast signal processing and real-time control are necessary for active robotic walkers when the users walk on slopes,while assistive forces cannot be provided by passive robotic walkers when the users walk uphill.A robotic walker with an active-passive hybrid actuator(APHA)was developed in this study.The APHA,which consists of a rotary magnetorheological(MR)brake and a DC motor,can provide mobility assistance to users walking both uphill and downhill via the cooperative operation of the MR brake and DC motor.The rotary MR brake was designed with a T-shaped configuration,and the system was optimized to minimize the brake volume.Prototypes of the APHA and robotic walker were constructed.A control algorithm for the robotic walker was developed based on the characteristics of the APHA and the structure of the robotic walker.The mechanical properties of the APHA were characterized,and experiments were conducted to evaluate the mobility assistance supplied by the robotic walker on different roads.The results show that the APHA can meet the requirements of the robotic walker,and suitable assistive forces can be provided by the robotic walker,which has a simple mechanical structure and control method.