期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Fabrication, microstructure, friction and wear properties of SiC3D/Al brake disc-graphite/Si C pad tribo-couple for high-speed train 被引量:3
1
作者 Lan JIANG Yan-li JIANG +4 位作者 Liang YU Hong-liang YANG Zi-shen LI You-dong DING Gao-feng FU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第9期1889-1902,共14页
The friction and wear properties of interpenetrating phase composites(IPC) SiC3D/Al sliding against graphite/SiC(G/SiC) composites were investigated using a sub-scale brake dynamometer. The testing conditions included... The friction and wear properties of interpenetrating phase composites(IPC) SiC3D/Al sliding against graphite/SiC(G/SiC) composites were investigated using a sub-scale brake dynamometer. The testing conditions included a braking pressure of 1.25 MPa and an initial braking speed(IBS) of 200-350 km/h in a braking process of high-speed train according to the scale-conversion rules. The tribo-couple materials were characterized using scanning electron microscopy(SEM), X-ray diffractometry(XRD), and energy-dispersive X-ray spectrometry(EDS). It is found that the matching tribo-couple features low friction surface temperature, reliable friction factor, and high durability. The continuous lubricating mechanically-mixed layer(MML) forms gradually on the worn surfaces of ring in the friction process. The MML is heterogeneous, which greatly controls wear rate and coefficient of friction(COF) of the composites. The wear mechanism of SiC3D/Al is typically abrasive wear at an IBS of 200-300 km/h. When the IBS increases to 350 km/h, oxidation wear and delamination are observed. The friction behavior of the tribo-couple predicted using Solidwork simulation software agrees well with the experimental results. The tribo-couple meets the requirement of emergency braking of high-speed train. 展开更多
关键词 SiC3D/Al graphite/SiC tribo-couple WEAR MICROSTRUCTURE sub-scale brake test
下载PDF
BRAKE TEST OF SiCp/A356 BRAKE DISK AND INTERPRETATION OF EXPERIMENTAL RESULTS 被引量:3
2
作者 YANG Zhiyong HAN Jianmin LI Weijing WANG Jinhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期74-79,共6页
Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times... Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times as high as one of iron and steel brake disk, the thermal expansion value of the aluminum brake disk is 2 times as big as one of iron and steel brake disk. Mechanical property of the material decreases with the temperature increasing generally during braking, on the other hand, the big thermal stress in the brake disk happens because the material expansion is constrained. Firstly, the reasons of the thermal stress generation and the fracture failure of brake disks during braking are analyzed qualitatively by virtue of three-bar stress frame and sandwich deformation principles in physic, and then the five constraints which cause the thermal stress are summarized. On the base of the experimental results on the 1:1 emergency brake test, the thermal stress and temperature fields are simulated; The behavior of the fracture failure is interpreted semi-quantitatively by finite element analysis, There is the coincident forecast for the fraction position in term of the two methods. In the end, in the light of the analysis and calculation results, it is the general principles observed by the structure design and assembly of the brake disk that are summarized. 展开更多
关键词 brake disk brake test Thermal stress Heat flux Finite element analysis
下载PDF
Experimental prototyping of the adhesion braking control system design concept for a mechatronic bogie 被引量:1
3
作者 Sundar Shrestha Maksym Spiryagin Qing Wu 《Railway Engineering Science》 2021年第1期15-29,共15页
The dynamic parameters of a roller rig vary as the adhesion level changes.The change in dynamics parameters needs to be analysed to estimate the adhesion level.One of these parameters is noise emanating from wheel–ra... The dynamic parameters of a roller rig vary as the adhesion level changes.The change in dynamics parameters needs to be analysed to estimate the adhesion level.One of these parameters is noise emanating from wheel–rail interaction.Most previous wheel–rail noise analysis has been conducted to mitigate those noises.However,in this paper,the noise is analysed to estimate the adhesion condition at the wheel–rail contact interface in combination with the other methodologies applied for this purpose.The adhesion level changes with changes in operational and environmental factors.To accurately estimate the adhesion level,the influence of those factors is included in this study.The testing and verification of the methodology required an accurate test prototype of the roller rig.In general,such testing and verification involve complex experimental works required by the intricate nature of the adhesion process and the integration of the different subsystems(i.e.controller,traction,braking).To this end,a new reduced-scale roller rig is developed to study the adhesion between wheel and rail roller contact.The various stages involved in the development of such a complex mechatronics system are described in this paper.Furthermore,the proposed brake control system was validated using the test rig under various adhesion conditions.The results indicate that the proposed brake controller has achieved a shorter stopping distance as compared to the conventional brake controller,and the brake control algorithm was able to maintain the operational condition even at the abrupt changes in adhesion condition. 展开更多
关键词 Wheel–rail adhesion condition brake controlMechatronics scaled bogie test rig Wheel–rail noiseAcoustic analysis
下载PDF
Frictional response of a novel C/C-ZrB_(2)-ZrC-SiC composite under simulated braking 被引量:5
4
作者 Yangbao QIAN Weigang ZHANG +1 位作者 Min GE Xi WEI 《Journal of Advanced Ceramics》 SCIE CAS 2013年第2期157-161,共5页
A novel braking material,C/C-ZrB_(2)-ZrC-SiC carbon fibre-reinforced hybrid ceramic matrix composite,was prepared by chemical vapour infiltration and polymeric precursor infiltration and pyrolysis.Investigation of the... A novel braking material,C/C-ZrB_(2)-ZrC-SiC carbon fibre-reinforced hybrid ceramic matrix composite,was prepared by chemical vapour infiltration and polymeric precursor infiltration and pyrolysis.Investigation of the microstructure of C/C-ZrB_(2)-ZrC-SiC composite showed the homogenous dispersion of three-phase ceramic as the matrix.The frictional properties of the hybrid C/C-ZrB_(2)-ZrC-SiC ceramic matrix composite were measured by a disk-on-disk type dynamometer under dry and wet conditions to simulate the normal landing state of aircraft brake disk friction pairs.C/C-ZrB_(2)-ZrC-SiC ceramic matrix composite has a higher and more stable friction coefficient under wet condition than under dry condition,indicating that the composite has better performance compared with C/C or C/C-SiC braking materials. 展开更多
关键词 ceramic matrix composite brake materials ABRASION braking testing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部