期刊文献+
共找到349篇文章
< 1 2 18 >
每页显示 20 50 100
A numerical method for the simulation of freight train emergency braking operations based on the UIC braked weight percentage
1
作者 N.Bosso Matteo Magelli N.Zampieri 《Railway Engineering Science》 2023年第2期162-171,共10页
The present paper shows the development of a strategy for the calculation of the air brake forces of European freight trains. The model is built to upgrade the existing Politecnico di Torino longitudinal train dynamic... The present paper shows the development of a strategy for the calculation of the air brake forces of European freight trains. The model is built to upgrade the existing Politecnico di Torino longitudinal train dynamics(LTD) code LTDPoliTo, which was originally unable to account for air brake forces. The proposed model uses an empirical exponential function to calculate the air brake forces during the simulation, while the maximum normal force on the brake friction elements is calculated according to the indication of the vehicle braked weight percentage.Hence, the model does not require to simulate in detail the fluid dynamics in the brake pipe nor to precisely know the main parameters of the braking system mounted on each vehicle. The model parameters are tuned to minimize the difference between the braking distance computed by the LTDPoliTo code and the value prescribed by the UIC544-1 leaflet in emergency braking operations. Simulations are run for different configurations of freight train compositions including a variable number of Shimmns wagons trailed by an E402B locomotive at the head of the train, as suggested in a reference literature paper. The results of the proposed method are in good agreement with the target braking distances calculated according to the international rules. 展开更多
关键词 Railway brake modelling Emergency braking UIC braking system braked weight Longitudinal train dynamics
下载PDF
Modelling of temperature and strain rate dependent behaviour of pearlitic steel in block braked railway wheels
2
作者 Ali Esmaeili Johan Ahlstrom +2 位作者 Magnus Ekh Dimitrios Nikas Tore Vernersson 《Railway Engineering Science》 2021年第4期362-378,共17页
Block braked railway wheels are subjected to thermal and rolling contact loading.The thermal loading results in high temperatures and thermal stresses which cause slow time dependent processes such as creep,relaxation... Block braked railway wheels are subjected to thermal and rolling contact loading.The thermal loading results in high temperatures and thermal stresses which cause slow time dependent processes such as creep,relaxation and static recovery of the wheel material.At the same time,the rolling contact loading implies a very fast mechanical load application.This paper is focused on material modeling of pearlitic steel for a wide range of loading rates at elevated temperatures.The starting point is a viscoplasticity model including nonlinear isotropic and kinematic hardening.The Delobelle overstress function is employed to capture strain rate dependent response of the material.The model also includes static recovery of the hardening to capture slower viscous(diffusion dominated)behaviour of the material.Experiments for the pearlitic wheel steel ER7 in terms of cyclic strain-controlled uniaxial tests with hold-time,uniaxial ratchetting tests including rapid cycles and biaxial cyclic tests with tension/compression and torsion are used to calibrate the material model.These experiments were performed under isothermal conditions at different temperatures.In the ratchetting tests,higher loading rates are obtained and these have been used to calibrate the high strain rate response of the viscoplasticity model.The paper is concluded with a numerical example of a block braked wheel where the importance of accounting for the viscoplasticity in modelling is highlighted. 展开更多
关键词 Block braking High temperatures Pearlitic steel Railway wheels VISCOPLASTICITY
下载PDF
Modeling and Capacity Configuration Optimization of CRH5 EMU On-Board Energy Storage System
3
作者 Mingxing Tian Weiyuan Zhang Zhaoxu Su 《Energy Engineering》 EI 2025年第1期307-329,共23页
In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways Hi... In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train. 展开更多
关键词 Electrified railway regenerative braking bi-level programming on-board energy storage power quality capacity configuration
下载PDF
Copper-Free Resin-Based Braking Materials:A New Approach for Substituting Copper with Fly-Ash Cenospheres in Composites
4
作者 Kaikui Zheng Youxi Lin +2 位作者 Shanmin You Zhiying Ren Jianmeng Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期401-412,共12页
Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials with... Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials without copper has become a significant challenge.In this paper,the resin-based braking materials were filled with flyash cenospheres to develop copper-free braking materials.The effects of fly-ash cenospheres on the physical properties,mechanical and friction and wear properties of braking materials were studied.Furthermore,the wear mechanism of copper-free resin-based braking materials filled with fly-ash cenospheres was discussed.The results indicate that the inclusion of fly-ash cenospheres in the braking materials improved their thermal stability,hardness and impact strength,reduced their density,effectively increased the friction coefficient at medium and high temperatures,and enhanced the heat-fade resistance of the braking materials.The inclusion of fly-ash cenospheres contributed to the formation of surface friction film during the friction process of the braking materials,and facilitated the transition of form from abrasive wear to adhesive wear.At 100-350℃,the friction coefficient of the optimal formulation is in the range of 0.57-0.61,and the wear rate is in the range(0.29-0.65)×10^(-7) cm^(3)·N^(-1)·m^(-1),demonstrating excellent resistance to heat-fade and stability in friction coefficient.This research proposes the use of fly-ash cenospheres as a substitute for environmentally harmful and expensive copper in brake materials,which not only improves the performance of braking materials but also reduces their costs. 展开更多
关键词 Fly-ash cenospheres Braking materials Friction and wear Heat-fade resistance Wear form
下载PDF
Thermal fatigue and wear of compacted graphite iron brake discs with various thermomechanical properties
5
作者 Gui-quan Wang Zhuo Xu +2 位作者 Zhong-li Liu Xiang Chen Yan-xiang Li 《China Foundry》 SCIE EI CAS CSCD 2024年第3期248-256,共9页
The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigat... The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear. 展开更多
关键词 compacted graphite iron brake disc thermomechanical properties thermal fatigue WEAR
下载PDF
Sustainable Biocomposites Materials for Automotive Brake Pad Application:An Overview
6
作者 Joseph O.Dirisu Imhade P.Okokpujie +4 位作者 Olufunmilayo O.Joseph Sunday O.Oyedepo Oluwasegun Falodun Lagouge K.Tartibu Firdaussi D.Shehu 《Journal of Renewable Materials》 EI CAS 2024年第3期485-511,共27页
Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscri... Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscriminately occupying the land.This study reviews the literature in the broad area of green composites in search of materials that can be used in automotive brake pads.Materials made by biocomposite,rather than fossil fuels,will be favoured.A database containing the tribo-mechanical performance of numerous potential components for the future green composite was established using the technical details of bio-polymers and natural reinforcements.The development of materials with diverse compositions and varying proportions is now conceivable,and these materials can be permanently connected in fully regulated processes.This explanation demonstrates that all of these variables affect friction coefficient,resistance to wear from friction and high temperatures,and the operating life of brake pads to varying degrees.In this study,renewable materials for the matrix and reinforcement are screened to determine which have sufficient strength,coefficient of friction,wear resistance properties,and reasonable costs,making them a feasible option for a green composite.The most significant,intriguing,and unusual materials used in manufacturing brake pads are gathered in this review,which also analyzes how they affect the tribological characteristics of the pads. 展开更多
关键词 Asbestos brake pad BIOCOMPOSITES green composite mechanical properties natural reinforcement WASTE
下载PDF
Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis
7
作者 Yan Wang Siwen Li Na Wei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3467-3493,共27页
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu... A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking. 展开更多
关键词 Corrugated steel web girder bridges simply supported beam bridges vehicle-bridge coupled vibration BRAKING impact factor
下载PDF
Integrated Active Suspension and Anti-Lock Braking Control for Four-Wheel-Independent-Drive Electric Vehicles
8
作者 Ze Zhao Lei Zhang +3 位作者 Xiaoling Ding Zhiqiang Zhang Shaohua Li Liang Gu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期87-98,共12页
This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ... This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods. 展开更多
关键词 Four-wheel-independent-drive electric vehicles Active suspension system(ASS) Anti-lock braking system(ABS) Vertical-longitudinal vehicle dynamics
下载PDF
Research on motor rotation anomaly detection based on improved VMD algorithm
9
作者 Fuzhao Chen Zhilei Chen +4 位作者 Qian Chen Tianyang Gao Mingyan Dai Xiang Zhang Lin Sun 《Railway Sciences》 2024年第1期18-31,共14页
Purpose–The electromechanical brake system is leading the latest development trend in railway braking technology.The tolerance stack-up generated during the assembly and production process catalyzes the slight geomet... Purpose–The electromechanical brake system is leading the latest development trend in railway braking technology.The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder.The tolerance leads to imprecise brake control,so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system.This paper aims to present improved variational mode decomposition(VMD)algorithm,which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.Design/methodology/approach–The VMD algorithm plays a pivotal role in the preliminary phase,employing mode decomposition techniques to decompose the motor speed signals.Afterward,the error energy algorithm precision is utilized to extract abnormal features,leveraging the practical intrinsic mode functions,eliminating extraneous noise and enhancing the signal’s fidelity.This refined signal then becomes the basis for fault analysis.In the analytical step,the cepstrum is employed to calculate the formant and envelope of the reconstructed signal.By scrutinizing the formant and envelope,the fault point within the electromechanical brake system is precisely identified,contributing to a sophisticated and accurate fault diagnosis.Findings–This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake(EMB)motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction.The signal is reconstructed according to the effective intrinsic mode functions(IMFS)component of removing noise,and the formant and envelope are calculated by cepstrum to locate the fault point.Experiments show that the empirical mode decomposition(EMD)algorithm can effectively decompose the original speed signal.After feature extraction,signal enhancement and fault identification,the motor mechanical fault point can be accurately located.This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.Originality/value–By using this improved VMD algorithm,the electromechanical brake system can precisely identify the rotational anomaly of the motor.This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled.Compared with the conventional motor diagnosis method,this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs.Moreover,the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems. 展开更多
关键词 Electromechanical brake system Railway brake system Motor fault diagnosis Variational mode decomposition Error energy Feature extraction
下载PDF
Numerical and Experimental Analysis of the Aerodynamic Torque for Axle-Mounted Train Brake Discs
10
作者 Nan Liu Chen Hong +4 位作者 Xinchao Su Xing Jin Chen Jiang Yuqi Shi Bingkun Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1867-1882,共16页
As the velocity of a train increases,the corresponding air pumping power consumption of the brake discs increases proportionally.In the present experimental study,a standard axle-mounted brake disc with circumferentia... As the velocity of a train increases,the corresponding air pumping power consumption of the brake discs increases proportionally.In the present experimental study,a standard axle-mounted brake disc with circumferential pillars was analyzed using a 1:1 scale model and a test rig in a wind tunnel.In particular,three upstream velocities were selected on the basis of earlier investigations of trains operating at 160,250,and 400 km/h,respectively.Moreover,3D steady computational fluid dynamics(CFD)simulations of the flow field were conducted to compare with the wind tunnel test outcomes.The results for a 3-car train at 180 km/h demonstrated:(1)good agreement between the air resistance torques obtained from the wind tunnel tests and the related numerical results,with differences ranging from 0.95%to 5.88%;(2)discrepancies ranging from 3.2 to 3.8 N·m;(3)cooling ribs contributing more than 60%of the air resistance torque;(4)the fast rotation of brake discs causing a significantly different flow field near the bogie area,resulting in 25 times more air pumping power loss than that obtained in the stationary brake-disc case. 展开更多
关键词 Axle-mounted train brake disc aerodynamic torque wind tunnel test numerical simulation
下载PDF
Regenerative Braking Energy Recovery System of Metro Train Based on Dual-Mode Power Management
11
作者 Feng Zhao Xiaotong Zhu +1 位作者 Xiaoqiang Chen Ying Wang 《Energy Engineering》 EI 2024年第9期2585-2601,共17页
In order to fully utilize the regenerative braking energy of metro trains and stabilize the metro DC traction busbar voltage,a hybrid regenerative braking energy recovery system with a dual-mode power management strat... In order to fully utilize the regenerative braking energy of metro trains and stabilize the metro DC traction busbar voltage,a hybrid regenerative braking energy recovery system with a dual-mode power management strategy is proposed.Firstly,the construction of the hybrid regenerative braking energy recovery system is explained.Then,based on the power demand of low-voltage load in metro stations,a dual-mode power management strategy is proposed to allocate the reference power of each system according to the different working conditions,and the control methods of each system are set.Finally,the correctness and effectiveness of the dual-mode strategy are verified through simulation,and the proposed braking energy utilization scheme is compared with other singleform utilization schemes.The results illustrate that the hybrid system with the dual-mode strategy can effectively recycle the regenerative braking energy of metro train and inhibit the busbar voltage fluctuation;the proposed braking energy utilization scheme has certain advantages on energy recovery and DC bus voltage stabilization compared with other single-form schemes;the proposed power management strategy can correctly allocate the reference power of each system with a lower construction cost. 展开更多
关键词 Metro train regenerative braking energy energy feed-back system energy storage system power management
下载PDF
Optimal allocation method of electric/air braking force of high-speed train considering axle load transfer
12
作者 Feng Guo Jing He 《High-Speed Railway》 2024年第2期77-84,共8页
Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the probl... Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking. 展开更多
关键词 Braking force allocation WHEELSET Dynamicity Axle load transfer total Adhesion utilization ratio
下载PDF
Virtually coupled train set control subject to space-time separation:A distributed economic MPC approach with emergency braking configuration
13
作者 Xiaolin Luo Tao Tang +1 位作者 Le Wang Hongjie Liu 《High-Speed Railway》 2024年第3期143-152,共10页
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula... The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches. 展开更多
关键词 Virtually coupled train set Space-time separation Economic model predictive control Distributed model predictive control Emergency braking configuration
下载PDF
SCIENCE AND TECHNOLOGY
14
《China Today》 2024年第5期69-69,共1页
China's Queqiao-2 Relay Satellite Enters Lunar Orbit China's Queqiao-2 relay satellite has successfully performed a near-moon braking procedure and entered its circumlunar orbit,according to the China National... China's Queqiao-2 Relay Satellite Enters Lunar Orbit China's Queqiao-2 relay satellite has successfully performed a near-moon braking procedure and entered its circumlunar orbit,according to the China National Space Administration(CNSA).At 12.46 a.m.(Beijing Time)on March 25,after approximately 112 flight hours,the satellite began near-moon braking at a distance of approximately 440 kilometers from the lunar surface and entered its circumlunar orbit 19 minutes later,the CNSA said. 展开更多
关键词 BRAKING LUNAR ORBIT
下载PDF
ISO releases a standard on braking systems of railway vehicles
15
《China Standardization》 2024年第3期15-15,共1页
ISO 24221:2024, Railway applications-Braking system-General requirements, the first of its kind, was recently released. With the leading efforts of National Railway Administration of China, China has made new breakthr... ISO 24221:2024, Railway applications-Braking system-General requirements, the first of its kind, was recently released. With the leading efforts of National Railway Administration of China, China has made new breakthrough in railway international standardization by the development of the international standard. 展开更多
关键词 BRAKING BREAKTHROUGH RAILWAY
下载PDF
Investigating the Impact of Base Heating and External Electric Field on PV Cell Performance under Intense Illumination
16
作者 Boubacar Soro Guy Serge Tchouadep +4 位作者 Esso-Ehanam Tchedre Kpeli Ousmane Souliga Adama Ouedraogo Issa Zerbo Martial Zoungrana 《Open Journal of Applied Sciences》 2024年第5期1305-1314,共10页
The characterization of the performances of a PV cell is linked to intrinsic factors of this cell. It is therefore important for us to identify the favorable or unfavorable conditions that affect the performance of PV... The characterization of the performances of a PV cell is linked to intrinsic factors of this cell. It is therefore important for us to identify the favorable or unfavorable conditions that affect the performance of PV cells. It is from this perspective that it seems judicious to us to study the simultaneous influence of the heating of the base and an external electric field on the performance of a PV cell under intense illumination of 50 suns. Two phenomena contribute to the heating of the base of a PV cell which is heating due to the transfer by conduction of solar radiation energy received by the surface of the PV cell and the heat generated inside the PV cell by various phenomena linked to the movement of photogenerated charged carriers. In this study, we take into account the heating linked to the movement of the charged carriers in the base. After a mathematical modeling of the PV cell considered, some hypotheses are formulated and the expressions of the electrical parameters are established as a function of the electric field and base temperature. Subsequently, we use numerical simulation to highlight the behavior of theses parameters as a function of temperature and of the intensity of the electric field. The results show that for any given temperature, the orientation of the electric field as considered in our work improves the performance of the PV cell while high temperatures degrade these performances. Furthermore, the analysis of the curves shows that the harmful effect of temperature on the performance of a PV cell is more accentuated at large values of electric field. 展开更多
关键词 COLLISIONS THERMALIZATION BRAKING Electric Strength Base Temperature
下载PDF
Brake Discs Surface Defect Detection Using the IGD-IHT Algorithm and the PIQEDS-ISSA-NESN Algorithm
17
作者 Feng Li Zhen Yu +1 位作者 Juan Gao Qi An 《Instrumentation》 2024年第3期62-73,共12页
As one of the core parts, the brake discs directly impact the braking and safety performance of vehicles. Traditional surface detection methods of the brake disc have poor robustness due to their reliance on manual fe... As one of the core parts, the brake discs directly impact the braking and safety performance of vehicles. Traditional surface detection methods of the brake disc have poor robustness due to their reliance on manual feature extraction. A detection instrument was designed to focus on the detection. The features were extracted using the improved Gaussian difference algorithm and Hough transform algorithm(IGD-IHT). An identification method for brake disc surface defects was designed in this paper based on the Perception-based Image Quality Evaluator and Dempster rule-improved sparrow search algorithm-Nonlinear echo state network(PIQEDS-ISSA-NESN) to better identify. It was shown in the experiment that the accuracy was more than 97%, the false alarm rate was less than 1.5%, and the false alarm rate was less than 1.5%. 展开更多
关键词 surface defectdetection IGD-IHT algorithm PIQEDS-ISSA-NESN algorithm brake discs
下载PDF
Sepiolite:A new component suitable for 380 km/h high-speed rail brake pads
18
作者 Jiaqi Wu Zhuan Li +4 位作者 Guoyuan Wen Zonglong Gao Ye Li Yang Li Peng Xiao 《Advanced Powder Materials》 2024年第4期36-46,共11页
To enhance the high-temperature adaptability of copper-based composite materials and C–C/SiC discs,this article innovatively introduces a method of replacing graphite with sepiolite,resulting in the successful fabric... To enhance the high-temperature adaptability of copper-based composite materials and C–C/SiC discs,this article innovatively introduces a method of replacing graphite with sepiolite,resulting in the successful fabrication of samples with exceptional mechanical and friction properties.The results reveal that moderate incorporation(less 6%)of sepiolite provides a particle reinforcement effect,resulting in an improvement of mechanical properties.Interestingly,the addition of sepiolite causes a change in the traditional saddle-shaped friction curve due to high temperature lubrication.Meanwhile,the primary advantage of sepiolite lies in its superior abrasion resistance,evident in the increased friction coefficient and altered wear mechanisms with higher sepiolite content.The wear resistance is optimal at 200 Km/h(400℃).Particularly,the unique composition of the friction layer(outermost layer:a composite film consisting of B2O3,sepiolite,graphite,and metal oxide films;intermediate layer:metal oxide films)plays a pivotal role in improving friction stability.Finally,there are significant optimizations in the GA algorithm,especially GA-GB model has the best prediction effect on the maximum friction temperature. 展开更多
关键词 Lubrication-wear Sepiolite-graphite High-speed rail brake pads MECHANISMS Friction layer Prediction of temperature
下载PDF
Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling 被引量:13
19
作者 姜澜 姜艳丽 +2 位作者 喻亮 苏楠 丁友东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2783-2791,共9页
The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk dur... The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well. 展开更多
关键词 finite element method brake disk co-continuous SiC/6061 composite thermal analysis airflow cool
下载PDF
New Method to Restrain Pumping Voltage of Braking Procedure for Brushless DC Motor of Electric Armored Vehicle 被引量:3
20
作者 郑慕侨 宋小庆 +1 位作者 孙德福 臧克茂 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期137-141,共5页
In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pu... In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid. 展开更多
关键词 electrical armored vehicle brushless DC motor regenerative braking
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部