期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A novel predictive braking energy recovery strategy for electric vehicles considering motor thermal protection
1
作者 YANG Chao SUN TongLin +2 位作者 YANG LiuQuan ZHANG YuHang WANG WeiDa 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第4期1253-1269,共17页
Braking energy recovery(BER)aims to recover the vehicle's kinetic energy by coordinating the motor and mechanical braking torque to extend the driving range of the electric vehicle(EV).To achieve this goal,the mot... Braking energy recovery(BER)aims to recover the vehicle's kinetic energy by coordinating the motor and mechanical braking torque to extend the driving range of the electric vehicle(EV).To achieve this goal,the motor/generator mode requires frequent switching and prolonged operation during driving.In this case,the motor temperature will unavoidably rise,potentially triggering motor thermal protection(MTP).Activating MTP increases the risk of motor component failure,and the EV typically disables the BER function.Thus,maximizing BER while reducing the risk of motor overheating is a challenging problem.To address this issue,this article proposes a predictive BER strategy with MTP using the non-smooth Pontryagin Minimum Principle(NSPMP)for EVs.Firstly,a Markov long short-term memory(MLSTM)model is designed to obtain future velocity information.Secondly,the BER problem with MTP in the studied EV is embedded in a model predictive control(MPC)framework.Then,under the MPC framework,the NSPMP strategy is proposed to resolve the problem of MTP.Finally,the performance of the proposed strategy is verified through simulation and a hardware-in-loop test.The results show that in two real-world driving cycles,compared to the rule-based strategy,the proposed strategy reduced power consumption by 1.24%and0.96%,respectively,and effectively limited motor temperature.Additionally,under global cycle conditions,this strategy demonstrated better MTP control performance compared to other benchmark strategies. 展开更多
关键词 electric vehicle braking energy recovery strategy motor thermal protection non-smooth PMP
原文传递
Temperature Compensation Algorithm for Hydraulic System Pressure Control 被引量:1
2
作者 Huien Gao Liang Chu +1 位作者 Jianhua Guo Dianbo Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期556-563,共8页
In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductanc... In this paper the control mechanism of solenoid valve is analyzed,which shows the solenoid valve control is actually the control of coil current.The response characteristic of coil current is related to coil inductance and resistance.The coil resistance is influenced greatly by the ambient temperature and the self-heating of coil,which affects the control precision of coil current.First,considering the heat dissipation mode of coil,the coil temperature model is established from the perspective of heat conduction,and a temperature compensation algorithm for hydraulic system pressure control is put forward.Then the hardware-in-the-loop testbed is set up by using the dSPACE platform,carrying out wheel cylinder pressurization tests with inlet valve fully opened at-40℃ and 20℃,and testing the actual pressure of wheel cylinder with the target pressures at-40℃ and 6 000 kPa/s(pressurization rate).The results show that the pressure control temperature compensation algorithm proposed in this paper accurately corrects the influence of resistance temperature drift on the response accuracy of wheel cylinder pressure.After the correction,the pressure difference is less than 500 kPa,which can meet the control accuracy requirements of solenoid valve,enriching the linear control characteristic of solenoid valve. 展开更多
关键词 braking energy recovery heat conduction temperature compensation linear pressure control rapid control prototype
下载PDF
Implementable Strategy Research of Brake Energy Recovery Based on Dynamic Programming Algorithm for a Parallel Hydraulic Hybrid Bus 被引量:6
3
作者 Zhong-Liang Zhang Jie Chen 《International Journal of Automation and computing》 EI CSCD 2014年第3期249-255,共7页
The purpose of this paper is to develop an implementable strategy of brake energy recovery for a parallel hydraulic hybrid bus. Based on brake process analysis, a dynamic programming algorithm of brake energy recovery... The purpose of this paper is to develop an implementable strategy of brake energy recovery for a parallel hydraulic hybrid bus. Based on brake process analysis, a dynamic programming algorithm of brake energy recovery is established. And then an implementable strategy of brake energy recovery is proposed by the constraint variable trajectories analysis of the dynamic programming algorithm in the typical urban bus cycle. The simulation results indicate the brake energy recovery efficiency of the accumulator can reach 60% in the dynamic programming algorithm. And the hydraulic hybrid system can output braking torque as much as possible.Moreover, the accumulator has almost equal efficiency of brake energy recovery between the implementable strategy and the dynamic programming algorithm. Therefore, the implementable strategy is very effective in improving the efficiency of brake energy recovery.The road tests show the fuel economy of the hydraulic hybrid bus improves by 22.6% compared with the conventional bus. 展开更多
关键词 Implementable strategy brake energy recovery dynamic programming parallel hydraulic hybrid bus shifting schedule pump/motor displacement.
原文传递
A design method for booster motor of brake-by-wire system based on intelligent electric vehicle
4
作者 Bumin Meng Zhengzhao Zhou +1 位作者 Congyue Zhang Feifan Yang 《Green Energy and Intelligent Transportation》 2023年第4期58-68,共11页
The brake-by-wire(BBW)system is an essential part of the intelligent electric vehicle,which is determination of the braking safety and recovery efficiency.To design a safe and efficient booster motor,the design of boo... The brake-by-wire(BBW)system is an essential part of the intelligent electric vehicle,which is determination of the braking safety and recovery efficiency.To design a safe and efficient booster motor,the design of booster motor for BBW system is discussed in this paper.Through comparative analysis,experimental simulation and assessment argument,the scheme of designing a booster motor for brake-by-wire system is completely described.First,the mainstream structure of the BBW system and the main challenges it faces in the assisted motor are discussed.Second,comparing the motors of different types and structures,the motor body and control system scheme suitable for the characteristics of the booster motor system are determined.Then,through the simulation analysis of the ansoft and matlab,the optimization scheme of the motor and performance improvement are proposed.Further,through the actual design of a set of the booster motor system,the safe and efficient motor designing are verified,and the problems involving functional safety are discussed.Finally,focus on the problem while simulation and experiment,some important countermeasures to improve current technology and prospect of in-depth study are pointed out. 展开更多
关键词 Electric vehicle Brake-by-wire system Booster motor braking energy recovery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部