Consider a branching random walk, where the underlying branching mechanism is governed by a Galton-Watson process and the moving law of particles by a discrete random variable on the integer lattice Z. Denote by Zn(z...Consider a branching random walk, where the underlying branching mechanism is governed by a Galton-Watson process and the moving law of particles by a discrete random variable on the integer lattice Z. Denote by Zn(z) the number of particles in the n-th generation in the model for each z ∈ Z. We derive the exact convergence rate in the local limit theorem for Zn(z) assuming a condition like "EN(logN)1+λ 〈 ∞" for the offspring distribution and a finite moment condition on the motion law. This complements the known results for the strongly non-lattice branching random walk on the real line and for the simple symmetric branching random walk on the integer lattice.展开更多
We consider a branching random walk with a random environment m time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environmen...We consider a branching random walk with a random environment m time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environment indexed by the time n. The envi- ronment is supposed to be independent and identically distributed. For A C R, let Zn(A) be the number of particles of generation n located in A. We show central limit theorems for the counting measure Zn (-) with appropriate normalization.展开更多
This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properti...This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properties of the transition probabilities are showed.展开更多
文摘Consider a branching random walk, where the underlying branching mechanism is governed by a Galton-Watson process and the moving law of particles by a discrete random variable on the integer lattice Z. Denote by Zn(z) the number of particles in the n-th generation in the model for each z ∈ Z. We derive the exact convergence rate in the local limit theorem for Zn(z) assuming a condition like "EN(logN)1+λ 〈 ∞" for the offspring distribution and a finite moment condition on the motion law. This complements the known results for the strongly non-lattice branching random walk on the real line and for the simple symmetric branching random walk on the integer lattice.
基金partially supported by the National Natural Science Foundation of China(NSFC,11101039,11171044,11271045)a cooperation program between NSFC and CNRS of France(11311130103)+1 种基金the Fundamental Research Funds for the Central UniversitiesHunan Provincial Natural Science Foundation of China(11JJ2001)
文摘We consider a branching random walk with a random environment m time, in which the offspring distribution of a particle of generation n and the distribution of the displacements of its children depend on an environment indexed by the time n. The envi- ronment is supposed to be independent and identically distributed. For A C R, let Zn(A) be the number of particles of generation n located in A. We show central limit theorems for the counting measure Zn (-) with appropriate normalization.
基金supported by NNSF of China(6053408070571079)Open Fundation of SKLSE of Wuhan University (2008-07-03)
文摘This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properties of the transition probabilities are showed.