The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th...The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.展开更多
Background Dairy cows are at high risk of fatty liver disease in early lactation,but current preventative measures are not always effective.Cows with fatty liver have lower circulating branched-chain amino acid(BCAA)c...Background Dairy cows are at high risk of fatty liver disease in early lactation,but current preventative measures are not always effective.Cows with fatty liver have lower circulating branched-chain amino acid(BCAA)concentra-tions whereas cows with high circulating BCAA levels have low liver triglyceride(TG).Our objective was to determine the impact of BCAA and their corresponding ketoacids(branched-chain ketoacids,BCKA)on production performance and liver TG accumulation in Holstein cows in the first 3 weeks postpartum.Methods Thirty-six multiparous Holstein cows were used in a randomized block design experiment.Cows were abomasally infused for the first 21 d postpartum with solutions of 1)saline(CON,n=12);2)BCA(67 g valine,50 g leu-cine,and 34 g isoleucine,n=12);and 3)BCK(77 g 2-ketovaline calcium salt,57 g 2-ketoleucine calcium salt,and 39 g 2-ketoisoleucine calcium salt,n=12).All cows received the same diet.Treatment effects were determined using PROC GLIMMIX in SAS.Results No differences were detected for body weight,body condition score,or dry matter intake averaged over the first 21 d postpartum.Cows receiving BCK had significantly lower liver TG concentrations compared to CON(6.60%vs.4.77%,standard error of the mean(SEM)0.49)during the first 3 weeks of lactation.Infusion of BCA increased milk yield(39.5 vs.35.3 kg/d,SEM 1.8),milk fat yield(2.10 vs.1.69 kg/d,SEM 0.08),and lactose yield(2.11 vs.1.67 kg/d,SEM 0.07)compared with CON.Compared to CON,cows receiving BCA had lower plasma glucose(55.0 vs.59.2 mg/dL,SEM 0.86)but higherβ-hydroxybutyrate(9.17 vs.6.00 mg/dL,SEM 0.80).Conclusions Overall,BCAA supplementation in this study improved milk production,whereas BCKA supplementa-tion reduced TG accumulation in the liver of fresh cows.展开更多
BACKGROUND The lack of specific predictors for type-2 diabetes mellitus(T2DM)severely impacts early intervention/prevention efforts.Elevated branched-chain amino acids(BCAAs:Isoleucine,leucine,valine)and aromatic amin...BACKGROUND The lack of specific predictors for type-2 diabetes mellitus(T2DM)severely impacts early intervention/prevention efforts.Elevated branched-chain amino acids(BCAAs:Isoleucine,leucine,valine)and aromatic amino acids(AAAs:Tyrosine,tryptophan,phenylalanine)show high sensitivity and specificity in predicting diabetes in animals and predict T2DM 10-19 years before T2DM onset in clinical studies.However,improvement is needed to support its clinical utility.AIM To evaluate the effects of body mass index(BMI)and sex on BCAAs/AAAs in new-onset T2DM individuals with varying body weight.METHODS Ninety-seven new-onset T2DM patients(<12 mo)differing in BMI[normal weight(NW),n=33,BMI=22.23±1.60;overweight,n=42,BMI=25.9±1.07;obesity(OB),n=22,BMI=31.23±2.31]from the First People’s Hospital of Yunnan Province,Kunming,China,were studied.One-way and 2-way ANOVAs were conducted to determine the effects of BMI and sex on BCAAs/AAAs.RESULTS Fasting serum AAAs,BCAAs,glutamate,and alanine were greater and high-density lipoprotein(HDL)was lower(P<0.05,each)in OB-T2DM patients than in NW-T2DM patients,especially in male OB-T2DM patients.Arginine,histidine,leucine,methionine,and lysine were greater in male patients than in female patients.Moreover,histidine,alanine,glutamate,lysine,valine,methionine,leucine,isoleucine,tyrosine,phenylalanine,and tryptophan were significantly correlated with abdominal adiposity,body weight and BMI,whereas isoleucine,leucine and phenylalanine were negatively correlated with HDL.CONCLUSION Heterogeneously elevated amino acids,especially BCAAs/AAAs,across new-onset T2DM patients in differing BMI categories revealed a potentially skewed prediction of T2DM development.The higher BCAA/AAA levels in obese T2DM patients would support T2DM prediction in obese individuals,whereas the lower levels of BCAAs/AAAs in NW-T2DM individuals may underestimate T2DM risk in NW individuals.This potentially skewed T2DM prediction should be considered when BCAAs/AAAs are to be used as the T2DM predictor.展开更多
Copper catalyzed asymmetric formal [3+2] cycloaddition of propargylic esters toβ‐keto phospho‐nates for the synthesis of chiral phosphonylated 2,3‐dihydrofurans was developed. By using a bulky and structurally ri...Copper catalyzed asymmetric formal [3+2] cycloaddition of propargylic esters toβ‐keto phospho‐nates for the synthesis of chiral phosphonylated 2,3‐dihydrofurans was developed. By using a bulky and structurally rigid tridentate ketimine P,N,N ligand, a series of optically active phosphonylated 2,3‐dihydrofurans were prepared in high yield and up to 92%ee.展开更多
Alzheimer’s disease is an incurable chronic neurodegenerative disorder and the leading cause of dementia,imposing a growing economic burden upon society.The disease progression is associated with gradual deposition o...Alzheimer’s disease is an incurable chronic neurodegenerative disorder and the leading cause of dementia,imposing a growing economic burden upon society.The disease progression is associated with gradual deposition of amyloid plaques and the formation of neurofibrillary tangles within the brain parenchyma,yet severe dementia is the culminating phase of the enduring pathology.Converging evidence suggests that Alzheimer’s disease-related cognitive decline is the outcome of an extremely complex and persistent pathophysiological process.The disease is characterized by distinctive abnormalities apparent at systemic,histological,macromolecular,and biochemical levels.Moreover,besides the well-defined and self-evident characteristic profuse neurofibrillary tangles,dystrophic neurites,and amyloid-beta deposits,the Alzheimer’s disease-associated pathology includes neuroinflammation,substantial neuronal loss,apoptosis,extensive DNA damage,considerable mitochondrial malfunction,compromised energy metabolism,and chronic oxidative stress.Likewise,distinctive metabolic dysfunction has been named a leading cause and a hallmark of Alzheimer’s disease that is apparent decades prior to disease manifestation.State-of-theart metabolomics studies demonstrate that altered branched-chain amino acids(BCAAs)metabolism accompanies Alzheimer’s disease development.Lower plasma valine levels are correlated with accelerated cognitive decline,and,conversely,an increase in valine concentration is associated with reduced risk of Alzheimer’s disease.Additionally,a clear BCAAs-related metabolic signature has been identified in subjects with obesity,diabetes,and atherosclerosis.Also,arginine metabolism is dramatically altered in Alzheimer’s disease human brains and animal models.Accordingly,a potential role of the urea cycle in the Alzheimer’s disease development has been hypothesized,and preclinical studies utilizing intervention in the urea cycle and/or BCAAs metabolism have demonstrated clinical potential.Continual failures to offer a competent treatment strategy directed against amyloid-beta or Tau proteins-related lesions,which could face all challenges of the multifaceted Alzheimer’s disease pathology,led to the hypothesis that hyperphosphorylated Tau and deposited amyloid-beta proteins are just hallmarks or epiphenomena,but not the ultimate causes of Alzheimer’s disease.Therefore,approaches targeting amyloid-beta or Tau are not adequate to cure the disease.Accordingly,the modern scientific vision of Alzheimer’s disease etiology and pathogenesis must reach beyond the hallmarks,and look for alternative strategies and areas of research.展开更多
Sarcopenia or cachexia is often complicated in heart failure.Nutritional support,particularly branched-chain amino acid(BCAA)supplementation,is a candidate treatment for improving sarcopenia or cachexia in elderly pat...Sarcopenia or cachexia is often complicated in heart failure.Nutritional support,particularly branched-chain amino acid(BCAA)supplementation,is a candidate treatment for improving sarcopenia or cachexia in elderly patients.However,the efficacy of BCAA supplementation in patients with heart failure has not been established,and the issue is comparatively more complex.Indeed,there are conflicting reports on the efficacy of BCAA supplementation.The evidence for including BCAA supplementation in treating patients with heart failure was reviewed,and the complexity of the issue was discussed.展开更多
It has been reported that host defense responses, such as phagocytic function of neutrophils and natural killer (NK) cell activity of lymphocytes, are impaired in cirrhotic patients. This review will concentrate on th...It has been reported that host defense responses, such as phagocytic function of neutrophils and natural killer (NK) cell activity of lymphocytes, are impaired in cirrhotic patients. This review will concentrate on the impairment of innate immune responses in decompensated cirrhotic patients and the effect of the treatment by branched-chain amino acids (BCAA) on innate immune responses. We already reported that phagocytic function of neutrophils was significantly improved by 3-mo BCAA supplementation. In addition, the changes of NK activity were also significant at 3 mo of supplementation compared with before supplementation. Also, Fisher’s ratios were reported to be significantly increased at 3 mo of BCAA supplementation compared with those before oral supplementation. Therefore, administration of BCAA could reduce the risk of bacterial and viral infection in patients with decompensated cirrhosis by restoring impaired innate immune responses of the host. In addition, it was also revealed that BCAA oral supplementation could reduce the risk of development of hepatocellular carcinoma in cirrhotic patients. The mechanisms of the effects will also be discussed in this review article.展开更多
基金supported by a grant from the French Society of Sleep Research and Medicine(to LS)The China Scholarship Council(to HL)The CNRS,INSERM,Claude Bernard University Lyon1(to LS)。
文摘The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.
基金This work is supported by the Agriculture and Food Research Initiative competitive grant No.2021-67015-33383 from the USDA National Institute of Food and Agriculture(Washington,DC)and USDA,AgBioResearch,Michigan State University.
文摘Background Dairy cows are at high risk of fatty liver disease in early lactation,but current preventative measures are not always effective.Cows with fatty liver have lower circulating branched-chain amino acid(BCAA)concentra-tions whereas cows with high circulating BCAA levels have low liver triglyceride(TG).Our objective was to determine the impact of BCAA and their corresponding ketoacids(branched-chain ketoacids,BCKA)on production performance and liver TG accumulation in Holstein cows in the first 3 weeks postpartum.Methods Thirty-six multiparous Holstein cows were used in a randomized block design experiment.Cows were abomasally infused for the first 21 d postpartum with solutions of 1)saline(CON,n=12);2)BCA(67 g valine,50 g leu-cine,and 34 g isoleucine,n=12);and 3)BCK(77 g 2-ketovaline calcium salt,57 g 2-ketoleucine calcium salt,and 39 g 2-ketoisoleucine calcium salt,n=12).All cows received the same diet.Treatment effects were determined using PROC GLIMMIX in SAS.Results No differences were detected for body weight,body condition score,or dry matter intake averaged over the first 21 d postpartum.Cows receiving BCK had significantly lower liver TG concentrations compared to CON(6.60%vs.4.77%,standard error of the mean(SEM)0.49)during the first 3 weeks of lactation.Infusion of BCA increased milk yield(39.5 vs.35.3 kg/d,SEM 1.8),milk fat yield(2.10 vs.1.69 kg/d,SEM 0.08),and lactose yield(2.11 vs.1.67 kg/d,SEM 0.07)compared with CON.Compared to CON,cows receiving BCA had lower plasma glucose(55.0 vs.59.2 mg/dL,SEM 0.86)but higherβ-hydroxybutyrate(9.17 vs.6.00 mg/dL,SEM 0.80).Conclusions Overall,BCAA supplementation in this study improved milk production,whereas BCKA supplementa-tion reduced TG accumulation in the liver of fresh cows.
基金Supported by the Open Project Grant for Clinical Medical Center of Yunnan Province,No.2019LCZXKF-NM03Medical Leader Training Grant,No.L-201624and Yunnan Province Ten Thousand Talents:“Medical Expert”grant,No.YNWR-MY-2019-020.
文摘BACKGROUND The lack of specific predictors for type-2 diabetes mellitus(T2DM)severely impacts early intervention/prevention efforts.Elevated branched-chain amino acids(BCAAs:Isoleucine,leucine,valine)and aromatic amino acids(AAAs:Tyrosine,tryptophan,phenylalanine)show high sensitivity and specificity in predicting diabetes in animals and predict T2DM 10-19 years before T2DM onset in clinical studies.However,improvement is needed to support its clinical utility.AIM To evaluate the effects of body mass index(BMI)and sex on BCAAs/AAAs in new-onset T2DM individuals with varying body weight.METHODS Ninety-seven new-onset T2DM patients(<12 mo)differing in BMI[normal weight(NW),n=33,BMI=22.23±1.60;overweight,n=42,BMI=25.9±1.07;obesity(OB),n=22,BMI=31.23±2.31]from the First People’s Hospital of Yunnan Province,Kunming,China,were studied.One-way and 2-way ANOVAs were conducted to determine the effects of BMI and sex on BCAAs/AAAs.RESULTS Fasting serum AAAs,BCAAs,glutamate,and alanine were greater and high-density lipoprotein(HDL)was lower(P<0.05,each)in OB-T2DM patients than in NW-T2DM patients,especially in male OB-T2DM patients.Arginine,histidine,leucine,methionine,and lysine were greater in male patients than in female patients.Moreover,histidine,alanine,glutamate,lysine,valine,methionine,leucine,isoleucine,tyrosine,phenylalanine,and tryptophan were significantly correlated with abdominal adiposity,body weight and BMI,whereas isoleucine,leucine and phenylalanine were negatively correlated with HDL.CONCLUSION Heterogeneously elevated amino acids,especially BCAAs/AAAs,across new-onset T2DM patients in differing BMI categories revealed a potentially skewed prediction of T2DM development.The higher BCAA/AAA levels in obese T2DM patients would support T2DM prediction in obese individuals,whereas the lower levels of BCAAs/AAAs in NW-T2DM individuals may underestimate T2DM risk in NW individuals.This potentially skewed T2DM prediction should be considered when BCAAs/AAAs are to be used as the T2DM predictor.
基金supported by the National Natural Science Foundation of China (21403022,21572226)the Natural Science Foundation of Liaoning Province of China (2015020194)~~
文摘Copper catalyzed asymmetric formal [3+2] cycloaddition of propargylic esters toβ‐keto phospho‐nates for the synthesis of chiral phosphonylated 2,3‐dihydrofurans was developed. By using a bulky and structurally rigid tridentate ketimine P,N,N ligand, a series of optically active phosphonylated 2,3‐dihydrofurans were prepared in high yield and up to 92%ee.
基金supported by a Marie Curie CIG Grant 322113a Leir Foundation Grant+1 种基金a Ginzburg Family Foundation Granta Katz Foundation Grant to AOS
文摘Alzheimer’s disease is an incurable chronic neurodegenerative disorder and the leading cause of dementia,imposing a growing economic burden upon society.The disease progression is associated with gradual deposition of amyloid plaques and the formation of neurofibrillary tangles within the brain parenchyma,yet severe dementia is the culminating phase of the enduring pathology.Converging evidence suggests that Alzheimer’s disease-related cognitive decline is the outcome of an extremely complex and persistent pathophysiological process.The disease is characterized by distinctive abnormalities apparent at systemic,histological,macromolecular,and biochemical levels.Moreover,besides the well-defined and self-evident characteristic profuse neurofibrillary tangles,dystrophic neurites,and amyloid-beta deposits,the Alzheimer’s disease-associated pathology includes neuroinflammation,substantial neuronal loss,apoptosis,extensive DNA damage,considerable mitochondrial malfunction,compromised energy metabolism,and chronic oxidative stress.Likewise,distinctive metabolic dysfunction has been named a leading cause and a hallmark of Alzheimer’s disease that is apparent decades prior to disease manifestation.State-of-theart metabolomics studies demonstrate that altered branched-chain amino acids(BCAAs)metabolism accompanies Alzheimer’s disease development.Lower plasma valine levels are correlated with accelerated cognitive decline,and,conversely,an increase in valine concentration is associated with reduced risk of Alzheimer’s disease.Additionally,a clear BCAAs-related metabolic signature has been identified in subjects with obesity,diabetes,and atherosclerosis.Also,arginine metabolism is dramatically altered in Alzheimer’s disease human brains and animal models.Accordingly,a potential role of the urea cycle in the Alzheimer’s disease development has been hypothesized,and preclinical studies utilizing intervention in the urea cycle and/or BCAAs metabolism have demonstrated clinical potential.Continual failures to offer a competent treatment strategy directed against amyloid-beta or Tau proteins-related lesions,which could face all challenges of the multifaceted Alzheimer’s disease pathology,led to the hypothesis that hyperphosphorylated Tau and deposited amyloid-beta proteins are just hallmarks or epiphenomena,but not the ultimate causes of Alzheimer’s disease.Therefore,approaches targeting amyloid-beta or Tau are not adequate to cure the disease.Accordingly,the modern scientific vision of Alzheimer’s disease etiology and pathogenesis must reach beyond the hallmarks,and look for alternative strategies and areas of research.
文摘Sarcopenia or cachexia is often complicated in heart failure.Nutritional support,particularly branched-chain amino acid(BCAA)supplementation,is a candidate treatment for improving sarcopenia or cachexia in elderly patients.However,the efficacy of BCAA supplementation in patients with heart failure has not been established,and the issue is comparatively more complex.Indeed,there are conflicting reports on the efficacy of BCAA supplementation.The evidence for including BCAA supplementation in treating patients with heart failure was reviewed,and the complexity of the issue was discussed.
基金Supported by Grants(in part)from Ministry of Education,Culture,Sports,Science and Technology of Japan and the Ministry of Health,Labor and Welfare of Japan
文摘It has been reported that host defense responses, such as phagocytic function of neutrophils and natural killer (NK) cell activity of lymphocytes, are impaired in cirrhotic patients. This review will concentrate on the impairment of innate immune responses in decompensated cirrhotic patients and the effect of the treatment by branched-chain amino acids (BCAA) on innate immune responses. We already reported that phagocytic function of neutrophils was significantly improved by 3-mo BCAA supplementation. In addition, the changes of NK activity were also significant at 3 mo of supplementation compared with before supplementation. Also, Fisher’s ratios were reported to be significantly increased at 3 mo of BCAA supplementation compared with those before oral supplementation. Therefore, administration of BCAA could reduce the risk of bacterial and viral infection in patients with decompensated cirrhosis by restoring impaired innate immune responses of the host. In addition, it was also revealed that BCAA oral supplementation could reduce the risk of development of hepatocellular carcinoma in cirrhotic patients. The mechanisms of the effects will also be discussed in this review article.