PECTATE LYASE‐LIKE10(PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in ...PECTATE LYASE‐LIKE10(PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in Chinese cabbage(Brassica campestris ssp. chinensis). Here, antisense‐RNA was used to study the functions of BcPLL10 in Chinese cabbage. Abnormal pollen was identified in the transgenic lines(bcpll10‐4, ‐5, and ‐6). In fertilization experiments, fewer seeds were harvested when the antisense‐RNA lines were used as pollen donor. In vivo and in vitro pollen germination assays less germinated pollen tubes were observed in bcpll10 lines. Scanning electron microscopy observation verified that the tryphine materials were over accumulated around the pollen surface and sticked them together in bcpll10.Moreover, transmission electron microscopy observation revealed that the internal endintine was overdeveloped and predominantly occupied the intine, and disturbed thenormal proportional distribution of the two layers in the non‐germinal furrow region; and no obvious demarcation existed between them in the germinal furrow region in the bcpll10 pollen. Collectively, this study presented a novel PLL gene that played an important role during the pollen wall development in B. campestris, which may also possess potential importance for male sterility usage in agriculture.展开更多
基金supported by the National Program on Key Basic Research Projects (No.2012CB113900)Natural Science Foundation of China (No.31071805,31301790)+2 种基金Key Sci-Technology Project of Zhejiang Province (No.2010C12004)Guangdong Natural Science Foundation (S2013040016220)the China Postdoctoral Science Foundation (2013M530375)
文摘PECTATE LYASE‐LIKE10(PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in Chinese cabbage(Brassica campestris ssp. chinensis). Here, antisense‐RNA was used to study the functions of BcPLL10 in Chinese cabbage. Abnormal pollen was identified in the transgenic lines(bcpll10‐4, ‐5, and ‐6). In fertilization experiments, fewer seeds were harvested when the antisense‐RNA lines were used as pollen donor. In vivo and in vitro pollen germination assays less germinated pollen tubes were observed in bcpll10 lines. Scanning electron microscopy observation verified that the tryphine materials were over accumulated around the pollen surface and sticked them together in bcpll10.Moreover, transmission electron microscopy observation revealed that the internal endintine was overdeveloped and predominantly occupied the intine, and disturbed thenormal proportional distribution of the two layers in the non‐germinal furrow region; and no obvious demarcation existed between them in the germinal furrow region in the bcpll10 pollen. Collectively, this study presented a novel PLL gene that played an important role during the pollen wall development in B. campestris, which may also possess potential importance for male sterility usage in agriculture.