Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cho...Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cholesterol-reducing and other pharmacological effects. The objective of this study was to investigate the effect of different concentrations of N (5, 10, and 20 mmol L-a, denoted by N5, N10 and N20) and S (0,5, 1, and 2 mmol L^-1, denoted by S0.5, S1 and S2) on the yield and GSs in pakchoi (Brassica campestris L. ssp. chinensis var. communis) in hydroponics. Results showed that N10 and N20 significantly enhanced the yield compared with N5, however, N20 had a negative effect relative to N10. Only with N10 and N20 low S supply (S0.5) reduced the yield. The concentrations of aliphatic GSs, aromatic GS and total GSs were enhanced by N5 and indolyl GSs were enhanced by N20. S2 enhanced the concentration of individual GS and total GSs. The concentrations of indolyl GSs were maximized in N20S2 treatment, whereas the highest concentrations of aliphatic GSs, aromatic GS and total GSs were found in N5S2 treatment. Effects of N and S on aliphatic GSs were higher than on indolyl GSs. The results suggest that the accumulation of aliphatic GSs and aromatic GS could be enhanced by low N and high S and restricted by high N while that of indolyl GSs could be enhanced by high N and high S.展开更多
Toxic arsenic(As)and trace element selenium(Se)are transformed by microorganisms but their complex interactions in soil-plant systems have not been fully understood.An Asand Se-oxidizing bacterium,Agrobacterium sp.T3F...Toxic arsenic(As)and trace element selenium(Se)are transformed by microorganisms but their complex interactions in soil-plant systems have not been fully understood.An Asand Se-oxidizing bacterium,Agrobacterium sp.T3F4,was applied to a native seleniferous As-polluted soil to investigate As/Se uptake by the vegetable Brassica rapa L.and As-Se interaction as mediated by strain T3F4.The Se content in the aboveground plants was significantly enhanced by 34.1%,but the As content was significantly decreased by 20.5% in the T3F4-inoculated pot culture compared to the control(P<0.05).Similar result was shown in treatment with additional 5 mg/kg of Se(IV)in soil.In addition,the As contents in roots were significantly decreased by more than 35% under T3F4 or Se(IV)treatments(P<0.05).Analysis of As-Se-bacterium interaction in a soil simulation experiment showed that the bioavailability of Se significantly increased and As was immobilized with the addition of the T3F4strain(P<0.05).Furthermore,an As/Se co-exposure hydroponic experiment demonstrated that As uptake and accumulation in plants was reduced by increasing Se(IV)concentrations.The 50% growth inhibition concentration(IC50)values for As in plants were increased about one-fold and two-fold under co-exposure with 5 and 10μmol/L Se(IV),respectively.In conclusion,strain T3F4 improves Se uptake but decreases As uptake by plants via oxidation of As and Se,resulting in decrease of soil As bioavailability and As/Se competitive absorption by plants.This provides a potential bioremediation strategy for Se biofortification and As immobilization in As-polluted soil.展开更多
Brassica rapa L.is an edible and medical plant in China used for treating various diseases,especially in the Tibet region.In this study,the chemical constituents of Brassica rapa L.extract(BE)was clarified by UHPLC-MS...Brassica rapa L.is an edible and medical plant in China used for treating various diseases,especially in the Tibet region.In this study,the chemical constituents of Brassica rapa L.extract(BE)was clarified by UHPLC-MS and anti-fatigue ability of BE was assessed through the behavior test and weight-loaded forced swimming test in mice.Then we determined several biochemical parameters related to fatigue to explore possible reasons.Results indicate that BE could significantly enhance exercise performance in mice,and there was a significant improvement in both grip-strength and the time on rota-rods.Meanwhile,BE showed significant anti-fatigue effects by decreasing the blood lactic acid(BLA),blood urea nitrogen(BUN),and creatine kinase(CK)levels and increasing the lactate dehydrogenase(LDH)and malondialdehyde(MDA)levels.Increases in superoxide dismutase(SOD)and glutathione peroxidase(GSH-Px)were observed and reactive oxygen species(ROS)levels was regulated.Liver and muscle glycogen levels and adenosine triphosphate(ATP)levels were also significantly increased.Pearson correlation analysis indicates that fatigue-related indexes including metabolites and energy-related indexes were significantly correlated with antioxidant levels.In conclusion,BE possesses remarkable anti-fatigue activity,thereby shows great potential for improving exercise performance and alleviating physical fatigue and can be considered as a functional food supplement for further development.展开更多
A molecular genetic map of Chinese cabbage was constructed with a 102 recombinant inbred (RI) population from a cross of two cultivated Chinese cabbage lines 177 and 276, using AFLP and RAPD markers. 352 markers inclu...A molecular genetic map of Chinese cabbage was constructed with a 102 recombinant inbred (RI) population from a cross of two cultivated Chinese cabbage lines 177 and 276, using AFLP and RAPD markers. 352 markers including 265 AFLP markers and 87 RAPD markers were integrated into 17 linkage groups. It covered a total of 2 665. 7 cM with an average interval of 7. 6 cM. AFLP marker is efficient for map construction while it easily forms clusters to cause big gaps in map. A total of 13.92 % abnormal segregation markers distributed in the map. The molecular genetic map is fundamental for gene localization, comparative genomics, and QTL mapping of important agronomic traits.展开更多
We conducted plant growth experiments in microbe-free vermiculite to study the effects of four types of fermented seaweed liquid fertilizer (SLF) made from nori (Pyropia yezoensis) seaweed on the germination, plant gr...We conducted plant growth experiments in microbe-free vermiculite to study the effects of four types of fermented seaweed liquid fertilizer (SLF) made from nori (Pyropia yezoensis) seaweed on the germination, plant growth characteristics, SPAD value, and nutrient content and uptake of komatsuna (Brassica rapa L. var. wakana komatsuna). The four types of fermented nori SLF used in this study were prepared by anaerobic fermentation of unwashed nori (SLF1), aerobic fermentation of unwashed nori (SLF2), anaerobic fermentation of washed nori (SLF3), and aerobic fermentation of washed nori (SLF4). Komatsuna seeds treated with 200-, 300-, and 400-fold dilutions of SLFs exhibited improved relative germination ratios (RGRs) at 3 and 4 days after sowing (DAS). At 4 DAS, the RGRs of seeds treated with 10-, 100-, 200-, 300-, and 400-fold SLF dilutions showed no differential effect. Seeds treated with undiluted SLFs did not germinate by 4 DAS. SLF1 may promote komatsuna seed germination. The nitrogen (N), calcium, magnesium, sodium (Na), and iodine (I) contents of plants treated with SLF1 were significantly increased relative to plants treated with the other SLFs. Moreover, the I and Na contents of plants were significantly increased by foliar spray application of different dilutions of SLF1. However, SLF treatment markedly reduced the shoot dry weight compared with 1/2-strength modified Hoagland nutrient (MHN) solution, although the same amounts of N and K were applied. SPAD values of the plants treated with SLFs were significantly higher than those of plants treated with MHN. Foliar treatment with SLFs had no significant effect on plant growth, SPAD value, or uptake of nutrients (except Na) relative to the control, but the I content was increased. Plants treated with SLF1 and SLF2 exhibited the highest Na uptake. Foliar spray treatments with SLF1 resulted in the highest I contents in plants. Based on our results, SLF1 is suitable for use as a liquid fertilizer to promote germination and increase nutrient content in komatsuna. These results need to be followed up in soil experiments in the presence of microbes in the rhizosphere.展开更多
In order to screen and identify excellent breeding resources and provide basic materials for Brassica rapa breeding,the contents of erucic acid,oleic acid and glucosinolate in 84 kinds of B. rapa were determined by ne...In order to screen and identify excellent breeding resources and provide basic materials for Brassica rapa breeding,the contents of erucic acid,oleic acid and glucosinolate in 84 kinds of B. rapa were determined by near-infrared spectroscopy,and the correlations among them were also analyzed. The results showed that the content of erucic acid and oleic acid were significantly negatively correlated,the contents of erucic acid and glucosinolate were significantly positively correlated,while the contents of oleic acid and glucosinolate were significantly negatively correlated; principal component analysis( PCA) were performed on the population materials,factors 1 and 2 were extracted for plotting,factor 1 and factor 2 could explain 73. 7% and 23. 2% of the phenotypic variation,respectively; through cluster analysis,79 materials aggregated to form group I,and five special variants deviated from the population. The variation of erucic acid,oleic acid and glucosinolates in B. rapa populations was rich and there was significant correlation. Through cluster analysis,five excellent B. rapa breeding materials( No. 32,No. 45,No. 46,No. 50,and No. 59) were screened.展开更多
To determine differential expression of genie male sterility A/B lines in Chinese cabbage-pak-choi (Brassica campestris ssp. chinensis Makino var. communis Tsen et Lee), we used the RNA fingerprinting technique, cDNA-...To determine differential expression of genie male sterility A/B lines in Chinese cabbage-pak-choi (Brassica campestris ssp. chinensis Makino var. communis Tsen et Lee), we used the RNA fingerprinting technique, cDNA-AFLP analysis, in different developmental stages and different tissues. While no obvious differential expressions were observed in rosette leaves, florescence leaves, and scapes, some differential expressions were found in alabstrums of A/B lines and among leaves, scapes and alabstrums. We analyzed the al-abstrums collected in different developmental stages with 10 primer combinations. We got a unique band between middle size alabstrums and large alabstrums in B line in one of the ten pair primers, and in another one pair, one band reflecting a higher gene-expression level in A line than that in B line was obtained. No unique bands were found with the other primer combinations. The bands reflecting different gene-expression level were confirmed by Northern hybridization. The results indicated that cDNA-AFLP was a suitable tool for studying differential expression of genie male sterility in plants. SDS-polyacrylamide gel electrophoresis patterns of soluble proteins further verified the difference in A/B lines.展开更多
Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known a...Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known about the genetic mechanisms of GSL accumulation in rapeseed flowering stalks. In this study, the variation and genetic architecture of GSL metabolites in flowering stalk tissues were investigated for the first time among a panel of 107 accessions. All GSL compounds exhibited continuous and wide variations in the present population. Progoitrin,glucobrassicanapin and gluconapin were the most abundant GSL compounds. Five quantitative trait loci(QTL) significantly associated with three GSL compounds were identified by genome-wide association study. GRA_C04 was under selected during modern breeding, in which the ratio of lower GSL haplotype(HAP2) in the accessions bred before 1990(52.56%) was significantly lower than that after 1990(78.95%). Four candidate genes, BnaA01. SOT16, BnaA06. SOT17, Bna A06. MYB51a, and Bna A06. MYB51b, were identified in the GTL_A01 and 4OH_A06 regions.These findings provide new insights into GSL biosynthesis in flowering stalk tissues and facilitate quality improvement in rapeseed flowering stalks.展开更多
This study was conducted to verify the inheritance of certain characters of rapeseed including erucic acid, glucosinolate and oleic acid contents by using generation mean analysis. The cross of lines Ⅲ174×Zi20 ...This study was conducted to verify the inheritance of certain characters of rapeseed including erucic acid, glucosinolate and oleic acid contents by using generation mean analysis. The cross of lines Ⅲ174×Zi20 (F1), F2, BC1 (F1×P1), BC2 (F1×P2), and parents (P1 and P2) were evaluated in the field. Data were measured on individual plants for oleic acid, erucic acid, and glucosinolate contents. Transgressive variations in F2 population were observed for oleic acid content, indicating that dominance and recessive genes distributed in both parents. Scaling test indicated that the effects of genes controlling these characters did not follow the additivedominance model. The data for three characters were analyzed using six parameter models and found that one or more types of epistatic gene effects were important for glucosinolate content. High broad sense heritabilities were obtained for erucic acid, oleic acid, and glucosinolate contents with the values of 98.97%, 93.68%, and 86.17%, respectively. Two major gene pairs were found to control the expression of erucic acid and oleic acid contents, while three major gene pairs were detected to control glucosinolate content.展开更多
Miniature inverted-repeat transposable elements(MITEs)are a group of DNA transposable element(TE)which preferentially distributed with gene associated regions.Tens of MITEs families have been revealed in Brassica napu...Miniature inverted-repeat transposable elements(MITEs)are a group of DNA transposable element(TE)which preferentially distributed with gene associated regions.Tens of MITEs families have been revealed in Brassica napus genome,they scatter across the genome with tens of thousands copies and produce polymorphisms both intra-and inter-species.Our previous studies revealed a Tourist-like MITE,Monkey King,associated with vernalization requirement of B.napus,however there are still few studies reveal MITE association with agricultural traits in B.napus.In the present study,80 polymorphic markers were developed from 55 MITEs,and used to evaluate genetic diversity in a panel of B.napus accessions consisting of 101 natural and 25 synthetic genotypes.Five agricultural traits,oil content,glucosinolate content,erucic acid content,weight of thousand seeds(WTS)and plant height,were investigated across 3-years field experiments,in addition,two traits,hypocotyl length and root length,were evaluated at the 4-leaf stage in the laboratory.Correlations between the MITE-based markers and seven traits were analyzed,finally,10 polymorphic markers produced by 6 pairs of MITE specific primers were revealed relatively high correlation with 5 traits.Two polymorphic markers were anchored with two candidate genes,BnaA02g13530D and BnaA08g20010D,respectively,which may contribute to glucosinolate content and WTS.This research may contribute to genetic improvement through utilization of MITE-induced polymorphisms in Brassica species.展开更多
文摘Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cholesterol-reducing and other pharmacological effects. The objective of this study was to investigate the effect of different concentrations of N (5, 10, and 20 mmol L-a, denoted by N5, N10 and N20) and S (0,5, 1, and 2 mmol L^-1, denoted by S0.5, S1 and S2) on the yield and GSs in pakchoi (Brassica campestris L. ssp. chinensis var. communis) in hydroponics. Results showed that N10 and N20 significantly enhanced the yield compared with N5, however, N20 had a negative effect relative to N10. Only with N10 and N20 low S supply (S0.5) reduced the yield. The concentrations of aliphatic GSs, aromatic GS and total GSs were enhanced by N5 and indolyl GSs were enhanced by N20. S2 enhanced the concentration of individual GS and total GSs. The concentrations of indolyl GSs were maximized in N20S2 treatment, whereas the highest concentrations of aliphatic GSs, aromatic GS and total GSs were found in N5S2 treatment. Effects of N and S on aliphatic GSs were higher than on indolyl GSs. The results suggest that the accumulation of aliphatic GSs and aromatic GS could be enhanced by low N and high S and restricted by high N while that of indolyl GSs could be enhanced by high N and high S.
基金supported by the National Natural Science Foundation of China(No.41771283)"Longyun Program"of the College of Life Science and Technology of Huazhong Agricultural University。
文摘Toxic arsenic(As)and trace element selenium(Se)are transformed by microorganisms but their complex interactions in soil-plant systems have not been fully understood.An Asand Se-oxidizing bacterium,Agrobacterium sp.T3F4,was applied to a native seleniferous As-polluted soil to investigate As/Se uptake by the vegetable Brassica rapa L.and As-Se interaction as mediated by strain T3F4.The Se content in the aboveground plants was significantly enhanced by 34.1%,but the As content was significantly decreased by 20.5% in the T3F4-inoculated pot culture compared to the control(P<0.05).Similar result was shown in treatment with additional 5 mg/kg of Se(IV)in soil.In addition,the As contents in roots were significantly decreased by more than 35% under T3F4 or Se(IV)treatments(P<0.05).Analysis of As-Se-bacterium interaction in a soil simulation experiment showed that the bioavailability of Se significantly increased and As was immobilized with the addition of the T3F4strain(P<0.05).Furthermore,an As/Se co-exposure hydroponic experiment demonstrated that As uptake and accumulation in plants was reduced by increasing Se(IV)concentrations.The 50% growth inhibition concentration(IC50)values for As in plants were increased about one-fold and two-fold under co-exposure with 5 and 10μmol/L Se(IV),respectively.In conclusion,strain T3F4 improves Se uptake but decreases As uptake by plants via oxidation of As and Se,resulting in decrease of soil As bioavailability and As/Se competitive absorption by plants.This provides a potential bioremediation strategy for Se biofortification and As immobilization in As-polluted soil.
基金financially supported by Military Medical Science and Technology Youth Cultivation Program(21QNPY095).
文摘Brassica rapa L.is an edible and medical plant in China used for treating various diseases,especially in the Tibet region.In this study,the chemical constituents of Brassica rapa L.extract(BE)was clarified by UHPLC-MS and anti-fatigue ability of BE was assessed through the behavior test and weight-loaded forced swimming test in mice.Then we determined several biochemical parameters related to fatigue to explore possible reasons.Results indicate that BE could significantly enhance exercise performance in mice,and there was a significant improvement in both grip-strength and the time on rota-rods.Meanwhile,BE showed significant anti-fatigue effects by decreasing the blood lactic acid(BLA),blood urea nitrogen(BUN),and creatine kinase(CK)levels and increasing the lactate dehydrogenase(LDH)and malondialdehyde(MDA)levels.Increases in superoxide dismutase(SOD)and glutathione peroxidase(GSH-Px)were observed and reactive oxygen species(ROS)levels was regulated.Liver and muscle glycogen levels and adenosine triphosphate(ATP)levels were also significantly increased.Pearson correlation analysis indicates that fatigue-related indexes including metabolites and energy-related indexes were significantly correlated with antioxidant levels.In conclusion,BE possesses remarkable anti-fatigue activity,thereby shows great potential for improving exercise performance and alleviating physical fatigue and can be considered as a functional food supplement for further development.
文摘A molecular genetic map of Chinese cabbage was constructed with a 102 recombinant inbred (RI) population from a cross of two cultivated Chinese cabbage lines 177 and 276, using AFLP and RAPD markers. 352 markers including 265 AFLP markers and 87 RAPD markers were integrated into 17 linkage groups. It covered a total of 2 665. 7 cM with an average interval of 7. 6 cM. AFLP marker is efficient for map construction while it easily forms clusters to cause big gaps in map. A total of 13.92 % abnormal segregation markers distributed in the map. The molecular genetic map is fundamental for gene localization, comparative genomics, and QTL mapping of important agronomic traits.
文摘We conducted plant growth experiments in microbe-free vermiculite to study the effects of four types of fermented seaweed liquid fertilizer (SLF) made from nori (Pyropia yezoensis) seaweed on the germination, plant growth characteristics, SPAD value, and nutrient content and uptake of komatsuna (Brassica rapa L. var. wakana komatsuna). The four types of fermented nori SLF used in this study were prepared by anaerobic fermentation of unwashed nori (SLF1), aerobic fermentation of unwashed nori (SLF2), anaerobic fermentation of washed nori (SLF3), and aerobic fermentation of washed nori (SLF4). Komatsuna seeds treated with 200-, 300-, and 400-fold dilutions of SLFs exhibited improved relative germination ratios (RGRs) at 3 and 4 days after sowing (DAS). At 4 DAS, the RGRs of seeds treated with 10-, 100-, 200-, 300-, and 400-fold SLF dilutions showed no differential effect. Seeds treated with undiluted SLFs did not germinate by 4 DAS. SLF1 may promote komatsuna seed germination. The nitrogen (N), calcium, magnesium, sodium (Na), and iodine (I) contents of plants treated with SLF1 were significantly increased relative to plants treated with the other SLFs. Moreover, the I and Na contents of plants were significantly increased by foliar spray application of different dilutions of SLF1. However, SLF treatment markedly reduced the shoot dry weight compared with 1/2-strength modified Hoagland nutrient (MHN) solution, although the same amounts of N and K were applied. SPAD values of the plants treated with SLFs were significantly higher than those of plants treated with MHN. Foliar treatment with SLFs had no significant effect on plant growth, SPAD value, or uptake of nutrients (except Na) relative to the control, but the I content was increased. Plants treated with SLF1 and SLF2 exhibited the highest Na uptake. Foliar spray treatments with SLF1 resulted in the highest I contents in plants. Based on our results, SLF1 is suitable for use as a liquid fertilizer to promote germination and increase nutrient content in komatsuna. These results need to be followed up in soil experiments in the presence of microbes in the rhizosphere.
基金Supported by Project of National Natural Science Foundation of China"QTL Mapping Combined with GWAS Strategy to Explore Major Regulation Genes for Glucosinolate Metabolism in Brassica juncea"(31560422)Science and Technology Foundation of Guizhou Province of China"Positioning,Mining and Metabolic Mechanism of Major Genes Regulating Glucosinolate from Leaves and Seeds of Brassica rapa"[Qian Ke He J Zi(2015)2052]+2 种基金Scientific Research Foundation for Returned Scholars,Ministry of Education"Mining of glucosinolate-regulated Genes in Brassica napus and Analysis of Its Expression Dynamics"[Jiao Wai Si Liu(2015)1098]Project for Doctoral Talent Introduction Fund of Guizhou University"Screening of Glucosinolate Content in Brassica napus Varieties and Development of Associated Markers"[Gui Da Ren Ji He Zi(2014)14]Construction Program of Biology First-class Discipline in Guizhou(GNYL[2017]009)
文摘In order to screen and identify excellent breeding resources and provide basic materials for Brassica rapa breeding,the contents of erucic acid,oleic acid and glucosinolate in 84 kinds of B. rapa were determined by near-infrared spectroscopy,and the correlations among them were also analyzed. The results showed that the content of erucic acid and oleic acid were significantly negatively correlated,the contents of erucic acid and glucosinolate were significantly positively correlated,while the contents of oleic acid and glucosinolate were significantly negatively correlated; principal component analysis( PCA) were performed on the population materials,factors 1 and 2 were extracted for plotting,factor 1 and factor 2 could explain 73. 7% and 23. 2% of the phenotypic variation,respectively; through cluster analysis,79 materials aggregated to form group I,and five special variants deviated from the population. The variation of erucic acid,oleic acid and glucosinolates in B. rapa populations was rich and there was significant correlation. Through cluster analysis,five excellent B. rapa breeding materials( No. 32,No. 45,No. 46,No. 50,and No. 59) were screened.
基金supported by the National Natural Science Foundation of China(39670512)
文摘To determine differential expression of genie male sterility A/B lines in Chinese cabbage-pak-choi (Brassica campestris ssp. chinensis Makino var. communis Tsen et Lee), we used the RNA fingerprinting technique, cDNA-AFLP analysis, in different developmental stages and different tissues. While no obvious differential expressions were observed in rosette leaves, florescence leaves, and scapes, some differential expressions were found in alabstrums of A/B lines and among leaves, scapes and alabstrums. We analyzed the al-abstrums collected in different developmental stages with 10 primer combinations. We got a unique band between middle size alabstrums and large alabstrums in B line in one of the ten pair primers, and in another one pair, one band reflecting a higher gene-expression level in A line than that in B line was obtained. No unique bands were found with the other primer combinations. The bands reflecting different gene-expression level were confirmed by Northern hybridization. The results indicated that cDNA-AFLP was a suitable tool for studying differential expression of genie male sterility in plants. SDS-polyacrylamide gel electrophoresis patterns of soluble proteins further verified the difference in A/B lines.
基金supported by the Key Research and Development project of Hubei Province (Grant Nos. 2020BBB083, 2021BBA097 and 2021BBA102)the National Key Research and Development Program of China (Grant No. 2016YFD0100202)。
文摘Glucosinolates(GSLs) and their hydrolytic products contribute to the quality traits of rapeseed flowering stalk tissues, such as taste, flavor and anticarcinogenic properties(Glucoraphanin). However, little is known about the genetic mechanisms of GSL accumulation in rapeseed flowering stalks. In this study, the variation and genetic architecture of GSL metabolites in flowering stalk tissues were investigated for the first time among a panel of 107 accessions. All GSL compounds exhibited continuous and wide variations in the present population. Progoitrin,glucobrassicanapin and gluconapin were the most abundant GSL compounds. Five quantitative trait loci(QTL) significantly associated with three GSL compounds were identified by genome-wide association study. GRA_C04 was under selected during modern breeding, in which the ratio of lower GSL haplotype(HAP2) in the accessions bred before 1990(52.56%) was significantly lower than that after 1990(78.95%). Four candidate genes, BnaA01. SOT16, BnaA06. SOT17, Bna A06. MYB51a, and Bna A06. MYB51b, were identified in the GTL_A01 and 4OH_A06 regions.These findings provide new insights into GSL biosynthesis in flowering stalk tissues and facilitate quality improvement in rapeseed flowering stalks.
基金Supportd by the Governor Special Funds of Guizhou (2008)76
文摘This study was conducted to verify the inheritance of certain characters of rapeseed including erucic acid, glucosinolate and oleic acid contents by using generation mean analysis. The cross of lines Ⅲ174×Zi20 (F1), F2, BC1 (F1×P1), BC2 (F1×P2), and parents (P1 and P2) were evaluated in the field. Data were measured on individual plants for oleic acid, erucic acid, and glucosinolate contents. Transgressive variations in F2 population were observed for oleic acid content, indicating that dominance and recessive genes distributed in both parents. Scaling test indicated that the effects of genes controlling these characters did not follow the additivedominance model. The data for three characters were analyzed using six parameter models and found that one or more types of epistatic gene effects were important for glucosinolate content. High broad sense heritabilities were obtained for erucic acid, oleic acid, and glucosinolate contents with the values of 98.97%, 93.68%, and 86.17%, respectively. Two major gene pairs were found to control the expression of erucic acid and oleic acid contents, while three major gene pairs were detected to control glucosinolate content.
基金supported by National Natural Science Foundation of China(No.31501341)Outstanding Youth Foundation of Henan Academy of Agricultural Sciences(No.2016YQ29).
文摘Miniature inverted-repeat transposable elements(MITEs)are a group of DNA transposable element(TE)which preferentially distributed with gene associated regions.Tens of MITEs families have been revealed in Brassica napus genome,they scatter across the genome with tens of thousands copies and produce polymorphisms both intra-and inter-species.Our previous studies revealed a Tourist-like MITE,Monkey King,associated with vernalization requirement of B.napus,however there are still few studies reveal MITE association with agricultural traits in B.napus.In the present study,80 polymorphic markers were developed from 55 MITEs,and used to evaluate genetic diversity in a panel of B.napus accessions consisting of 101 natural and 25 synthetic genotypes.Five agricultural traits,oil content,glucosinolate content,erucic acid content,weight of thousand seeds(WTS)and plant height,were investigated across 3-years field experiments,in addition,two traits,hypocotyl length and root length,were evaluated at the 4-leaf stage in the laboratory.Correlations between the MITE-based markers and seven traits were analyzed,finally,10 polymorphic markers produced by 6 pairs of MITE specific primers were revealed relatively high correlation with 5 traits.Two polymorphic markers were anchored with two candidate genes,BnaA02g13530D and BnaA08g20010D,respectively,which may contribute to glucosinolate content and WTS.This research may contribute to genetic improvement through utilization of MITE-induced polymorphisms in Brassica species.