Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base ...Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base BNi-2 brazing powder via friction stir processing. The DSS plates were laser welded to the Al5456/BNi-2 composite and also to the Al5456 alloy plates. The welding zones were studied by scanning electron microscopy, X-ray diffractometry, micro-hardness and shear tests. The weld interface layer became thinner from 23 to 5 μm, as the laser pulse distance was increased from 0.2 to 0.5 mm. Reinforcing of the Al alloy modified the phases at interface layer from Al-Fe intermetallic compounds (IMCs) in the DSS/Al alloy weld, to Al-Ni-Fe IMCs in the DSS/Al composite one, since more nickel was injected in the weld pool by BNi-2 reinforcements. This led to a remarkable reduction in crack tendency of the welds and decreased the hardness of the interface layer from ~950 HV to ~600 HV. Shear strengths of the DSS/Al composite welds were significantly increased by ~150%, from 46 to 114 MPa, in comparison to the DSS/Al alloy ones.展开更多
The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This p...The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This paper aims at revealing the effect of calcium on the melting behavior of the brazing alloy. The thermal analysis kinetics of silver alloy with trace calcium was studied by using differential scanning calorimetry ( DSC ) , and the enthalpy peaks were analyzed by differential methods. The rate constant of phase transformation in the probable brazing temperature range goes up with increasing calcium content, according to the values of the apparent activation energy, E, and the frequeney constant, A. It is concluded that the calcium addition could improve the melting performance of Ag-Cu-Zn brazing alloy.展开更多
Solid-liquid state bonding of Si3N4 ceramics with TiN-modified Ag-Cu-Ti brazing alloy was used'- to enhance joint strength. The effects of the TiN particles on the microstructures, interfacial reactions, and roo...Solid-liquid state bonding of Si3N4 ceramics with TiN-modified Ag-Cu-Ti brazing alloy was used'- to enhance joint strength. The effects of the TiN particles on the microstructures, interfacial reactions, and room-temperature properties of the joints were investigated. The results show that the TiN particles are gen- erally well dispersed in the Ag-Cu eutectic base and the interface between them is both clean and com-pact. Changes in the TiN volume fractions from 0 to 20% exert no noticeable effect on the interfacial reac-tion between Ag-Cu-Ti and the substrates. Other bonding parameters being constant, the TiN volume frac-tion in the filler material plays a key role in the joint properties. For TiN volume fractions below 20%, the joints are reinforced, especially joints with 5% and 20% TiN. The average shearing strength of joints with 5% TiN is 200.8 MPa, 30% higher than that of joints with no TiN (154.1 MPa). However, for TiN volumes frac- tions above 20%, the joint strengths decrease.展开更多
Vacuum brazing was successfully used to join Ti-22Al-25Nb alloy using Ti-Ni-Nb brazing alloys prepared by arc-melting. The influence of Nb content in the Ti-Ni-Nb brazing alloys on the interfacial microstructure and m...Vacuum brazing was successfully used to join Ti-22Al-25Nb alloy using Ti-Ni-Nb brazing alloys prepared by arc-melting. The influence of Nb content in the Ti-Ni-Nb brazing alloys on the interfacial microstructure and mechanical properties of the brazed joints was investigated. The results showed that the interfacial microstructure of brazed joint consisted of B2, O, ?3, and Ti2 Ni phase, while the width of brazing seams varied at different Nb contents. The room temperature shear strength reached359 MPa when the joints were brazed with eutectic Ti40Ni40Nb20 alloy at 1180?C for 20 min, and it was321, 308 and 256 MPa at 500, 650 and 800?C, respectively. Cracks primarily initiated and propagated in ?3compounds, and partially traversed B2+O region. Moreover, the fracture surface displayed typical ductile dimples when cracks propagated through B2+O region, which was favorable for the mechanical properties of the brazed joint.展开更多
In consideration of the envelopment of γ dendrites by the Hf-rich melts at the late period of solidification of the cast Ni-base superalloys containing Hf,a heat of brazing filler alloy composed of Ni-18.6Co-4.5Cr-4....In consideration of the envelopment of γ dendrites by the Hf-rich melts at the late period of solidification of the cast Ni-base superalloys containing Hf,a heat of brazing filler alloy composed of Ni-18.6Co-4.5Cr-4.7 W-25.6Hf(wt-%)was prepared.This alloy is hypereutectic.γ phase is the leading phase in eutectic γ+Ni_5Hf and γ bars are surrounded by Ni_5Hf phase.At the section perpendicular or parallel to the γ growing direction,the eutectic morphology is cellular or laminar respectively.The content of Ni_5Hf in the alloy is 68.7v.-%. The compositions of primary and eutectic Ni_5Hf are very similar.Ni,Co and Hf are the main elements and solubility of Cr and W in Ni_5Hf is very low.This alloy is an ideal brazing filler suitable to the directional or single crystal superalloy,and the elements are beneficial to superalloys properties.This filler alloy is of low melting point and of good fluidity.After braz- ing at 1240℃,5 min+1190℃,I h in 10^(-3) Pa vacuum,the microstructure of bond is the same as that of Hf-bearing superalloy.No Si and B contamination is involved.展开更多
Using newly developed Cu58Ni12Ti30 alloy as brazing filler metal, this paper has carried out the joining wxperiments of Si3N4 and the joint shength tests at room temperature.The joint brazed at 1,293K for 10 min exhib...Using newly developed Cu58Ni12Ti30 alloy as brazing filler metal, this paper has carried out the joining wxperiments of Si3N4 and the joint shength tests at room temperature.The joint brazed at 1,293K for 10 min exhibited the maximum strength value of 157.2 MPa.The microstructures of the joint cross-section were observed and the elements area distributions on the interface were examined by means of scanning electron microscope with X-ray wave-dispersion spectrometer.The phases formed in the joint were determined by X-ray diffraction analysis method.The results showed that during the brazing process the active element Ti diffused to the interfaces and reacted with Si3N4,resulted in forming the reaction products TiN NiTiSi, and Ti4Si3(or TiSi)on the interfaces.Some effects on the trend to produce these compounds were attempted to explain from α thermodynalic point of view.展开更多
A series of Ti_(56.25-x)Zr_(x)Ni_(25)Cu1_(8.75)(x=0–25,at.%) filler metals were designed based on a cluster-plus-glue-atom model to vacuum braze TiAl intermetallic to K4169 alloy. The impact of Zr content on the inte...A series of Ti_(56.25-x)Zr_(x)Ni_(25)Cu1_(8.75)(x=0–25,at.%) filler metals were designed based on a cluster-plus-glue-atom model to vacuum braze TiAl intermetallic to K4169 alloy. The impact of Zr content on the interfacial microstructure and shear strength of joints was examined. And the relationship between the interfacial lattice structure and the fracture behavior of the joint was investigated. The findings reveal a sectionalized characteristic with three reaction zones (Zone I, Zone II and Zone III) in the microstructure of the TiAl intermetallic to K4169 alloy joint. As the Zr content in filler metals increased, the diffusion of Ti transitioned from long-distance to short-distance in Zone I, changing the initial composition from TiNi_(3) /TiNi/NiNb/(Cr, Fe, Ni)SS to NiCrFe/(Cr, Fe, Ni)SS /TiNi. In Zone II, the initial composition altered from TiNi_(3) /TiNi to TiNi/Ti_(2) Ni/TiNi_(3) /TiCu/TiNi. The interface between Zones II and III altered from a non-coherent and semi-coherent interface of TiNi/TiAl/Ti_(3) Al with significant residual stress to a semi-coherent interface of TiNi/TiNi_(3) /TiAl_(2) /Ti_(3) Al with a gradient distribution. The shear strength of the joint initially decreased and then increased. When the Zr content of filler metal was 25 at.%, the shear strength of the joint reached 288 MPa. The crack initiation position changed from non-coherent TiNi/TiAl interface with high angle grain boundaries (HAGBs) and lattice mismatch of 65.86 at.% to a semi-coherent Ti3 Al/TiAl2 interface with a lattice mismatch of 20.07 at.% when the Zr content increased. The brittle fracture was present on the fracture surfaces of all brazed joints.展开更多
The properties of the joints are dictated by the nature, distribution, and morphology of the phases formed at the interface. The mechanical properties of brazed joints are well documented in the literature, contrarily...The properties of the joints are dictated by the nature, distribution, and morphology of the phases formed at the interface. The mechanical properties of brazed joints are well documented in the literature, contrarily to their electrochemical behaviour. Thus, the main objective of this study was to understand the influence of the phases formed at the interface on the corrosion behaviour of commercially pure Ti brazed joints, produced by using TiCuNi, eutectic Ag Cu, and Ag filler foils. The electrochemical behaviour of the Ti joints was accessed by open circuit potential and potentiodynamic polarization tests in phosphate buffer saline solution electrolyte at body temperature. Results showed that Ag-based fillers induced susceptibility to micro-galvanic corrosion between the Ag-rich and Ti phases formed at the interface and commercially pure Ti base metal. However, no significant differences were observed between the joint system and the base material when brazing with TiCuNi filler.展开更多
This paper reports on the design,fabrication,RF measurement,and high-power test of a prototype accelerator—such as 11.424 GHz with 12 cells—and a traveling wave of two halves.It was found that the unloaded gradient ...This paper reports on the design,fabrication,RF measurement,and high-power test of a prototype accelerator—such as 11.424 GHz with 12 cells—and a traveling wave of two halves.It was found that the unloaded gradient reached 103 MV/m during the high-power test and the measured breakdown rate,after 3.17×10^(7) pulses,was 1.62×10^(-4)/pulse/m at 94 MV/m and a 90 ns pulse length.We thus concluded that the high-gradient two-half linear accelerator is cost-effective,especially in high-frequency RF linear acceleration.Finally,we suggest that silverbased alloy brazing can further reduce costs.展开更多
Two new Fe-Cr system alloys,Fe-20Cr-43Ni-10P(mass%)and Fe-20Cr-20Ni-8P-5Si-2Mo(mass%),have been developed as substitutes for the expensive Ni-based brazing filler metal used in brazing exhaust gas recirculation co...Two new Fe-Cr system alloys,Fe-20Cr-43Ni-10P(mass%)and Fe-20Cr-20Ni-8P-5Si-2Mo(mass%),have been developed as substitutes for the expensive Ni-based brazing filler metal used in brazing exhaust gas recirculation coolers.The microstructures and melting properties of the alloys were analyzed by electron probe X-ray microanalyzer and differential scanning calorimetry.The electrochemical characteristics of the alloys were investigated by potentiodynamic polarization testing in an electrolyte solution made in accordance with the standards of the Automobile Manufacturers Association of Germany.Furthermore,the corrosion behaviors of the alloys were investigated by constant-potential polarization testing and surface characterization.It is found that both alloys are composed of solid-solution phases and phosphide phases.The solid-solution phases serve as the anode,and the phosphide phases serve as the cathode in the corrosion reaction for both alloys.Fe-20Cr-43Ni-10 P exhibits galvanic corrosion on the entire surface.In contrast,Fe-20Cr-20Ni-8P-5Si-2Mo is attacked at a few localized areas so that the cavities form on the surface.The corrosion potential(E_(corr)) is lower than that of Ni-29Cr-6P-4Si(mass%)for both alloys.This means that the Fe-Cr system alloys are more easily corroded than Ni-29Cr-6P-4Si.The corrosion rate and corrosion resistance cannot be investigated by the corrosion current density(i_(corr)) and polarization resistance(R_p),respectively,because of localized corrosion of the two alloys.展开更多
Due to native character of thermal expansion coefficient(CTE)mismatch between C_(f)/SiC and GH3536,achieving high strength joint was a huge challenge for C_(f)/SiC-GH3536 joints.Herein,a composite filler metal of Ag-C...Due to native character of thermal expansion coefficient(CTE)mismatch between C_(f)/SiC and GH3536,achieving high strength joint was a huge challenge for C_(f)/SiC-GH3536 joints.Herein,a composite filler metal of Ag-Cu-Ti+Sc_(2)(WO_(4))_(3) was developed to join C_(f)/SiC and GH3536.This work introduced Sc_(2)(WO_(4))_(3) to Ag-Cu-Ti system as a negative thermal expansion(NTE)reinforcing phase to release joint residual stress.Sc_(2)(WO_(4))_(3) was evenly distributed in the brazing seam and reacted with Ti to form Ti_(3)O_(5) reaction layer.The results of finite element analysis showed that the residual stress of the joints was effectively released by introducing Sc_(2)(WO_(4))_(3) reinforcing phase,and the mises stress was decreased from447 to 401 MPa.The maximum shear strength of the C_(f)/SiC-GH3536 joint brazed with Ag-Cu-Ti+6 vol%Sc_(2)(WO_(4))_(3) filler alloys was 64 MPa,which was about 2.6 times higher than that of Ag-Cu-Ti alloys.The results of this study provide a promising strategy for the introduction of new Sc_(2)(WO_(4))_(3) reinforcing phase in Ag-Cu-Ti system,and improve the reliability and feasibility of composite brazing alloy in brazing filed.展开更多
文摘Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base BNi-2 brazing powder via friction stir processing. The DSS plates were laser welded to the Al5456/BNi-2 composite and also to the Al5456 alloy plates. The welding zones were studied by scanning electron microscopy, X-ray diffractometry, micro-hardness and shear tests. The weld interface layer became thinner from 23 to 5 μm, as the laser pulse distance was increased from 0.2 to 0.5 mm. Reinforcing of the Al alloy modified the phases at interface layer from Al-Fe intermetallic compounds (IMCs) in the DSS/Al alloy weld, to Al-Ni-Fe IMCs in the DSS/Al composite one, since more nickel was injected in the weld pool by BNi-2 reinforcements. This led to a remarkable reduction in crack tendency of the welds and decreased the hardness of the interface layer from ~950 HV to ~600 HV. Shear strengths of the DSS/Al composite welds were significantly increased by ~150%, from 46 to 114 MPa, in comparison to the DSS/Al alloy ones.
文摘The purity of the brazing alloys applied is necessary to be improved with the increasing cleanness of steel. Calcium is easily brought into the widely ased brazing alloy, Ag-Cu-Zn, during the producing process. This paper aims at revealing the effect of calcium on the melting behavior of the brazing alloy. The thermal analysis kinetics of silver alloy with trace calcium was studied by using differential scanning calorimetry ( DSC ) , and the enthalpy peaks were analyzed by differential methods. The rate constant of phase transformation in the probable brazing temperature range goes up with increasing calcium content, according to the values of the apparent activation energy, E, and the frequeney constant, A. It is concluded that the calcium addition could improve the melting performance of Ag-Cu-Zn brazing alloy.
基金Supported by the National Natural Science Foundation of China (No. 50075046)
文摘Solid-liquid state bonding of Si3N4 ceramics with TiN-modified Ag-Cu-Ti brazing alloy was used'- to enhance joint strength. The effects of the TiN particles on the microstructures, interfacial reactions, and room-temperature properties of the joints were investigated. The results show that the TiN particles are gen- erally well dispersed in the Ag-Cu eutectic base and the interface between them is both clean and com-pact. Changes in the TiN volume fractions from 0 to 20% exert no noticeable effect on the interfacial reac-tion between Ag-Cu-Ti and the substrates. Other bonding parameters being constant, the TiN volume frac-tion in the filler material plays a key role in the joint properties. For TiN volume fractions below 20%, the joints are reinforced, especially joints with 5% and 20% TiN. The average shearing strength of joints with 5% TiN is 200.8 MPa, 30% higher than that of joints with no TiN (154.1 MPa). However, for TiN volumes frac- tions above 20%, the joint strengths decrease.
基金supported by the National Natural Science Foundation of China (Grant No. 51574177)the China Natural Founds for Distinguished Young Scientists (Grant No. 51325401)the National High Technology Research and Development Program of China (“863” Program, Granted No. 2015AA042504)
文摘Vacuum brazing was successfully used to join Ti-22Al-25Nb alloy using Ti-Ni-Nb brazing alloys prepared by arc-melting. The influence of Nb content in the Ti-Ni-Nb brazing alloys on the interfacial microstructure and mechanical properties of the brazed joints was investigated. The results showed that the interfacial microstructure of brazed joint consisted of B2, O, ?3, and Ti2 Ni phase, while the width of brazing seams varied at different Nb contents. The room temperature shear strength reached359 MPa when the joints were brazed with eutectic Ti40Ni40Nb20 alloy at 1180?C for 20 min, and it was321, 308 and 256 MPa at 500, 650 and 800?C, respectively. Cracks primarily initiated and propagated in ?3compounds, and partially traversed B2+O region. Moreover, the fracture surface displayed typical ductile dimples when cracks propagated through B2+O region, which was favorable for the mechanical properties of the brazed joint.
文摘In consideration of the envelopment of γ dendrites by the Hf-rich melts at the late period of solidification of the cast Ni-base superalloys containing Hf,a heat of brazing filler alloy composed of Ni-18.6Co-4.5Cr-4.7 W-25.6Hf(wt-%)was prepared.This alloy is hypereutectic.γ phase is the leading phase in eutectic γ+Ni_5Hf and γ bars are surrounded by Ni_5Hf phase.At the section perpendicular or parallel to the γ growing direction,the eutectic morphology is cellular or laminar respectively.The content of Ni_5Hf in the alloy is 68.7v.-%. The compositions of primary and eutectic Ni_5Hf are very similar.Ni,Co and Hf are the main elements and solubility of Cr and W in Ni_5Hf is very low.This alloy is an ideal brazing filler suitable to the directional or single crystal superalloy,and the elements are beneficial to superalloys properties.This filler alloy is of low melting point and of good fluidity.After braz- ing at 1240℃,5 min+1190℃,I h in 10^(-3) Pa vacuum,the microstructure of bond is the same as that of Hf-bearing superalloy.No Si and B contamination is involved.
文摘Using newly developed Cu58Ni12Ti30 alloy as brazing filler metal, this paper has carried out the joining wxperiments of Si3N4 and the joint shength tests at room temperature.The joint brazed at 1,293K for 10 min exhibited the maximum strength value of 157.2 MPa.The microstructures of the joint cross-section were observed and the elements area distributions on the interface were examined by means of scanning electron microscope with X-ray wave-dispersion spectrometer.The phases formed in the joint were determined by X-ray diffraction analysis method.The results showed that during the brazing process the active element Ti diffused to the interfaces and reacted with Si3N4,resulted in forming the reaction products TiN NiTiSi, and Ti4Si3(or TiSi)on the interfaces.Some effects on the trend to produce these compounds were attempted to explain from α thermodynalic point of view.
基金supported by the National Natural Science Foun-dation of China(Nos.52275314 and 52075074)the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning.
文摘A series of Ti_(56.25-x)Zr_(x)Ni_(25)Cu1_(8.75)(x=0–25,at.%) filler metals were designed based on a cluster-plus-glue-atom model to vacuum braze TiAl intermetallic to K4169 alloy. The impact of Zr content on the interfacial microstructure and shear strength of joints was examined. And the relationship between the interfacial lattice structure and the fracture behavior of the joint was investigated. The findings reveal a sectionalized characteristic with three reaction zones (Zone I, Zone II and Zone III) in the microstructure of the TiAl intermetallic to K4169 alloy joint. As the Zr content in filler metals increased, the diffusion of Ti transitioned from long-distance to short-distance in Zone I, changing the initial composition from TiNi_(3) /TiNi/NiNb/(Cr, Fe, Ni)SS to NiCrFe/(Cr, Fe, Ni)SS /TiNi. In Zone II, the initial composition altered from TiNi_(3) /TiNi to TiNi/Ti_(2) Ni/TiNi_(3) /TiCu/TiNi. The interface between Zones II and III altered from a non-coherent and semi-coherent interface of TiNi/TiAl/Ti_(3) Al with significant residual stress to a semi-coherent interface of TiNi/TiNi_(3) /TiAl_(2) /Ti_(3) Al with a gradient distribution. The shear strength of the joint initially decreased and then increased. When the Zr content of filler metal was 25 at.%, the shear strength of the joint reached 288 MPa. The crack initiation position changed from non-coherent TiNi/TiAl interface with high angle grain boundaries (HAGBs) and lattice mismatch of 65.86 at.% to a semi-coherent Ti3 Al/TiAl2 interface with a lattice mismatch of 20.07 at.% when the Zr content increased. The brittle fracture was present on the fracture surfaces of all brazed joints.
基金supported by Portuguese FCT,under the reference project UIDB/04436/2020 and M-ERA-NET/0001/2015 project。
文摘The properties of the joints are dictated by the nature, distribution, and morphology of the phases formed at the interface. The mechanical properties of brazed joints are well documented in the literature, contrarily to their electrochemical behaviour. Thus, the main objective of this study was to understand the influence of the phases formed at the interface on the corrosion behaviour of commercially pure Ti brazed joints, produced by using TiCuNi, eutectic Ag Cu, and Ag filler foils. The electrochemical behaviour of the Ti joints was accessed by open circuit potential and potentiodynamic polarization tests in phosphate buffer saline solution electrolyte at body temperature. Results showed that Ag-based fillers induced susceptibility to micro-galvanic corrosion between the Ag-rich and Ti phases formed at the interface and commercially pure Ti base metal. However, no significant differences were observed between the joint system and the base material when brazing with TiCuNi filler.
基金supported by the National Natural Science Foundation of China(No.11922504)。
文摘This paper reports on the design,fabrication,RF measurement,and high-power test of a prototype accelerator—such as 11.424 GHz with 12 cells—and a traveling wave of two halves.It was found that the unloaded gradient reached 103 MV/m during the high-power test and the measured breakdown rate,after 3.17×10^(7) pulses,was 1.62×10^(-4)/pulse/m at 94 MV/m and a 90 ns pulse length.We thus concluded that the high-gradient two-half linear accelerator is cost-effective,especially in high-frequency RF linear acceleration.Finally,we suggest that silverbased alloy brazing can further reduce costs.
文摘Two new Fe-Cr system alloys,Fe-20Cr-43Ni-10P(mass%)and Fe-20Cr-20Ni-8P-5Si-2Mo(mass%),have been developed as substitutes for the expensive Ni-based brazing filler metal used in brazing exhaust gas recirculation coolers.The microstructures and melting properties of the alloys were analyzed by electron probe X-ray microanalyzer and differential scanning calorimetry.The electrochemical characteristics of the alloys were investigated by potentiodynamic polarization testing in an electrolyte solution made in accordance with the standards of the Automobile Manufacturers Association of Germany.Furthermore,the corrosion behaviors of the alloys were investigated by constant-potential polarization testing and surface characterization.It is found that both alloys are composed of solid-solution phases and phosphide phases.The solid-solution phases serve as the anode,and the phosphide phases serve as the cathode in the corrosion reaction for both alloys.Fe-20Cr-43Ni-10 P exhibits galvanic corrosion on the entire surface.In contrast,Fe-20Cr-20Ni-8P-5Si-2Mo is attacked at a few localized areas so that the cavities form on the surface.The corrosion potential(E_(corr)) is lower than that of Ni-29Cr-6P-4Si(mass%)for both alloys.This means that the Fe-Cr system alloys are more easily corroded than Ni-29Cr-6P-4Si.The corrosion rate and corrosion resistance cannot be investigated by the corrosion current density(i_(corr)) and polarization resistance(R_p),respectively,because of localized corrosion of the two alloys.
基金the National Natural Science Foundation of China(Grant Nos.51575135 and 51622503)Natural Science Foundation of Heilongjiang Province of China(YQ2019E023)。
文摘Due to native character of thermal expansion coefficient(CTE)mismatch between C_(f)/SiC and GH3536,achieving high strength joint was a huge challenge for C_(f)/SiC-GH3536 joints.Herein,a composite filler metal of Ag-Cu-Ti+Sc_(2)(WO_(4))_(3) was developed to join C_(f)/SiC and GH3536.This work introduced Sc_(2)(WO_(4))_(3) to Ag-Cu-Ti system as a negative thermal expansion(NTE)reinforcing phase to release joint residual stress.Sc_(2)(WO_(4))_(3) was evenly distributed in the brazing seam and reacted with Ti to form Ti_(3)O_(5) reaction layer.The results of finite element analysis showed that the residual stress of the joints was effectively released by introducing Sc_(2)(WO_(4))_(3) reinforcing phase,and the mises stress was decreased from447 to 401 MPa.The maximum shear strength of the C_(f)/SiC-GH3536 joint brazed with Ag-Cu-Ti+6 vol%Sc_(2)(WO_(4))_(3) filler alloys was 64 MPa,which was about 2.6 times higher than that of Ag-Cu-Ti alloys.The results of this study provide a promising strategy for the introduction of new Sc_(2)(WO_(4))_(3) reinforcing phase in Ag-Cu-Ti system,and improve the reliability and feasibility of composite brazing alloy in brazing filed.