New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solu...New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutionsand triangular periodic wave solutions are obtained.展开更多
With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usi...With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usingthe symmetries,we find six classical similarity reductions and two nonclassical similarity reductions of the BS equation.Varieties of exact solutions of the BS equation are obtained by solving the reduced equations.展开更多
The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of t...The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.展开更多
In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilinea...In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilineax forms and Bgcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilineax equations. Via the Wronskian technique, it is proved that the Bgcklund transformations obtained are the ones between the ( N - 1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonie properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.展开更多
Abstract By applying the Lie group method, the (2+l)-dimensional soliton equation is reduced to some (1+1)-dimensional nonlinear equations. Based upon some new explicit solutions of the (2+1)-dimensional brea...Abstract By applying the Lie group method, the (2+l)-dimensional soliton equation is reduced to some (1+1)-dimensional nonlinear equations. Based upon some new explicit solutions of the (2+1)-dimensional breaking soliton equation are obtained.展开更多
In a recent paper [Commun. Theor. Phys. (Beijing, China) 49 (2008) 268], Huang et al. gave a general variable separation solution to the (2+1)-dimensional breaking soliton equation via a special Biicldund trans...In a recent paper [Commun. Theor. Phys. (Beijing, China) 49 (2008) 268], Huang et al. gave a general variable separation solution to the (2+1)-dimensional breaking soliton equation via a special Biicldund transformation and the variable separation approach. In terms of the derived variable separation solution and by introducing Jacobi elliptic functions, they claimed that nonelastic types of interaction between Jacobi elliptic function waves are investigated both analytically and graphically. We show that some inappropriateness or errors exist in their paper, and say nothing of the conclusion that some nonelastic types of interaction between Jacobi elliptic function waves in the (2+1)-dimensional breaking soliton equation have been found.展开更多
By means of the generalized direct method,a relationship is constructed between the new solutions andthe old ones of the (3+1)-dimensional breaking soliton equation.Based on the relationship,a new solution is obtained...By means of the generalized direct method,a relationship is constructed between the new solutions andthe old ones of the (3+1)-dimensional breaking soliton equation.Based on the relationship,a new solution is obtainedby using a given solution of the equation.The symmetry is also obtained for the (3+1)-dimensional breaking solitonequation.By using the equivalent vector of the symmetry,we construct a seven-dimensional symmetry algebra and getthe optimal system of group-invariant solutions.To every case of the optimal system,the (3+1)-dimensional breakingsoliton equation is reduced and some solutions to the reduced equations are obtained.Furthermore,some new explicitsolutions are found for the (3+1)-dimensional breaking soliton equation.展开更多
Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional breaking soliton system. By introducing Jacobi elliptic functions in...Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional breaking soliton system. By introducing Jacobi elliptic functions in the seed solution, two families of doubly periodic propagating wave patterns are derived. We investigate these periodic wave solutions with different modulus m selections, many important and interesting properties are revealed. The interaction of Jabcobi elliptic function waves are graphically considered and found to be nonelastic.展开更多
The (2+1)-dimensional breaking soliton equation describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. In this paper, with the aid of symbolic computation, six kind...The (2+1)-dimensional breaking soliton equation describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. In this paper, with the aid of symbolic computation, six kinds of new special exact soltion-like solutions of (2+1)-dimensional breaking soliton equation are obtained by using some general transformations and the further generalized projective Riccati equation method.展开更多
Fractional or fractal calculus is everywhere and very important.It is reported that the fractal approach is suitable for insight into the effect of porous structure on thermo-properties of cloth.A novel local fraction...Fractional or fractal calculus is everywhere and very important.It is reported that the fractal approach is suitable for insight into the effect of porous structure on thermo-properties of cloth.A novel local fractional breaking soliton equation is derived from the reduction of the linear spectral problem associated with the local fractional non-isospectral self-dual Yang-Mills equations.More specifically,the employed linear spectral problem is first reduced to the(2+1)-dimensional local fractional zero-curvature equation through variable transformations.Based on the reduced local fractional zero-curvature equation,the fractional breaking soliton equation is then constructed by the method of undetermined coefficients.This paper shows that some other local fractional models can be obtained by generalizing the existing methods of generating nonlinear partial differential equations with integer orders.展开更多
In this work,we study a new(2+1)-dimensional generalized breaking soliton equation which admits the Painleve property for one special set of parameters.We derive multiple soliton solutions,traveling wave solutions,and...In this work,we study a new(2+1)-dimensional generalized breaking soliton equation which admits the Painleve property for one special set of parameters.We derive multiple soliton solutions,traveling wave solutions,and periodic solutions as well.We use the simplified Hirotas method and a variety of ansatze to achieve our goal.展开更多
In this paper, the truncated Painleve analysis and the consistent tanh expansion (CTE) method are developed for the (2+1)-dimensional breaking soliton equation. As a result, the soliton-cnoidal wave interaction s...In this paper, the truncated Painleve analysis and the consistent tanh expansion (CTE) method are developed for the (2+1)-dimensional breaking soliton equation. As a result, the soliton-cnoidal wave interaction solution of the equation is explicitly given, which is dimcult to be found by other traditional methods. When the value of the Jacobi elliptic function modulus rn = 1, the soliton-cnoidal wave interaction solution reduces back to the two-soliton solution. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.展开更多
Under investigation is the(2+1)-dimensional breaking soliton equation. Based on a special ans?tz functions and the bilinear form, some entirely new double-periodic soliton solutions for the(2+1)-dimensional breaking s...Under investigation is the(2+1)-dimensional breaking soliton equation. Based on a special ans?tz functions and the bilinear form, some entirely new double-periodic soliton solutions for the(2+1)-dimensional breaking soliton equation are presented. With the help of symbolic computation software Mathematica, many important and interesting properties for these obtained solutions are revealed with some figures.展开更多
In the present paper,new analytical solutions for the space-time fractional Boussinesq and(2+1)-dimensional breaking soliton equations are obtained by using the simplified tan(φ(ξ)2)-expansion method.Here,fractional...In the present paper,new analytical solutions for the space-time fractional Boussinesq and(2+1)-dimensional breaking soliton equations are obtained by using the simplified tan(φ(ξ)2)-expansion method.Here,fractional derivatives are defined in the conformable sense.To show the correctness of the obtained traveling wave solutions,residual error function is defined.It is observed that the new solutions are very close to the exact solutions.The solutions obtained by the presented method have not been reported in former literature.展开更多
By using Xu's stable-range method,families of explicit exact solutions with multiple parameter functions for the(2+1)-dimensional breaking soliton and KadomtsevPetviashvili equations.These parameter functions make...By using Xu's stable-range method,families of explicit exact solutions with multiple parameter functions for the(2+1)-dimensional breaking soliton and KadomtsevPetviashvili equations.These parameter functions make our solutions more applicable to related practical models and boundary value problems.展开更多
In this article, the fractional derivatives are described in the modified Riemann-Liouville sense. We propose a new approach, namely an ansatz method, for solving fractional differential equations(FDEs) based on a f...In this article, the fractional derivatives are described in the modified Riemann-Liouville sense. We propose a new approach, namely an ansatz method, for solving fractional differential equations(FDEs) based on a fractional complex transform and apply it to solve nonlinear space-time fractional equations. As a result, the non-topological as well as the singular soliton solutions are obtained. This method can be suitable and more powerful for solving other kinds of nonlinear fractional FDEs arising in mathematical physics.展开更多
A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equati...A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.展开更多
In this paper, by means of double elliptic equation expansion approach, the novel double nonlinear wave solutions of the (2+1)-dimensional break soliton equation are obtained. These double nonlinear wave solutions ...In this paper, by means of double elliptic equation expansion approach, the novel double nonlinear wave solutions of the (2+1)-dimensional break soliton equation are obtained. These double nonlinear wave solutions contain the double Jacobi elliptic function-like solutions, the double solitary wave-like solutions, and so on. The method is also powerful to some other nonlinear wave equations in (2+1) dimensions.展开更多
Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generali...Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generalized method with the aid of Maple, we consider the (2+1)-dimentional breaking soliton equation. As a result, we successfully obtain some new and more general solutions including Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions, and so on. As an illustrative sampler the properties of some soliton solutions for the breaking soliton equation are shown by some figures. Our method can also be applied to other partial differential equations.展开更多
By means of the homogeneous balance principle, a nonlinear transformation to the well known breaking soliton equation with physical interest was given. The original equation was turned into a homogeneity differential...By means of the homogeneous balance principle, a nonlinear transformation to the well known breaking soliton equation with physical interest was given. The original equation was turned into a homogeneity differential equation with this nonlinear transformation. By solving the homogeneity equation via the simplified Hirota method and applying the nonlinear transformation, one soliton, two soliton and three soliton solutions as well as some other types of explicit solutions to the breaking soliton equation were obtained with the assistance of Maple.展开更多
文摘New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breakingsoliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutionsand triangular periodic wave solutions are obtained.
基金Supported by National Natural Science Foundation of China and China Academy of Engineering Physics (NSAF 11076015)
文摘With the aid of the classical Lie group method and nonclassical Lie group method,we derive the classicalLie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS)equation.Usingthe symmetries,we find six classical similarity reductions and two nonclassical similarity reductions of the BS equation.Varieties of exact solutions of the BS equation are obtained by solving the reduced equations.
文摘The singular manifold method is used to obtain two general solutions to a (2+1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023 the Open Fund under Grant No.BUAASKLSDE-09KF-04l+2 种基金Supported Project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China (973 Program) under Grant No.2005CB321901 the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.200800130006,Chinese Ministry of Education
文摘In this paper, two types of the (2+1)-dimensional breaking soliton equations axe investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilineax forms and Bgcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilineax equations. Via the Wronskian technique, it is proved that the Bgcklund transformations obtained are the ones between the ( N - 1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonie properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004zx16
文摘Abstract By applying the Lie group method, the (2+l)-dimensional soliton equation is reduced to some (1+1)-dimensional nonlinear equations. Based upon some new explicit solutions of the (2+1)-dimensional breaking soliton equation are obtained.
基金supported by National Natural Science Foundation of China under Grant No. 10272071the Natural Science Foundation of Zhejiang Province of China under Grant No. Y604106
文摘In a recent paper [Commun. Theor. Phys. (Beijing, China) 49 (2008) 268], Huang et al. gave a general variable separation solution to the (2+1)-dimensional breaking soliton equation via a special Biicldund transformation and the variable separation approach. In terms of the derived variable separation solution and by introducing Jacobi elliptic functions, they claimed that nonelastic types of interaction between Jacobi elliptic function waves are investigated both analytically and graphically. We show that some inappropriateness or errors exist in their paper, and say nothing of the conclusion that some nonelastic types of interaction between Jacobi elliptic function waves in the (2+1)-dimensional breaking soliton equation have been found.
基金National Natural Science Foundation of China under Grant No.10735030Shanghai Leading Academic Discipline Project under Grant No.B412+1 种基金Natural Science Foundations of Zhejiang Province of China under Grant No.Y604056the Doctoral Foundation of Ningbo City under Grant No.2005A61030
文摘By means of the generalized direct method,a relationship is constructed between the new solutions andthe old ones of the (3+1)-dimensional breaking soliton equation.Based on the relationship,a new solution is obtainedby using a given solution of the equation.The symmetry is also obtained for the (3+1)-dimensional breaking solitonequation.By using the equivalent vector of the symmetry,we construct a seven-dimensional symmetry algebra and getthe optimal system of group-invariant solutions.To every case of the optimal system,the (3+1)-dimensional breakingsoliton equation is reduced and some solutions to the reduced equations are obtained.Furthermore,some new explicitsolutions are found for the (3+1)-dimensional breaking soliton equation.
基金National Natural Science Foundation of China under Grant No.10272071the Natural Science Foundation of Zhejiang Province under Grant No.Y504111the Scientific Research Foundation of Huzhou University
文摘Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+1)-dimensional breaking soliton system. By introducing Jacobi elliptic functions in the seed solution, two families of doubly periodic propagating wave patterns are derived. We investigate these periodic wave solutions with different modulus m selections, many important and interesting properties are revealed. The interaction of Jabcobi elliptic function waves are graphically considered and found to be nonelastic.
文摘The (2+1)-dimensional breaking soliton equation describes the interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis. In this paper, with the aid of symbolic computation, six kinds of new special exact soltion-like solutions of (2+1)-dimensional breaking soliton equation are obtained by using some general transformations and the further generalized projective Riccati equation method.
基金Liaoning BaiQianWan Talents Program of China(2019)National Natural Science Foundation of China(No.11547005)Natural Science Foundation of Education Department of Liaoning Province of China(2020)。
文摘Fractional or fractal calculus is everywhere and very important.It is reported that the fractal approach is suitable for insight into the effect of porous structure on thermo-properties of cloth.A novel local fractional breaking soliton equation is derived from the reduction of the linear spectral problem associated with the local fractional non-isospectral self-dual Yang-Mills equations.More specifically,the employed linear spectral problem is first reduced to the(2+1)-dimensional local fractional zero-curvature equation through variable transformations.Based on the reduced local fractional zero-curvature equation,the fractional breaking soliton equation is then constructed by the method of undetermined coefficients.This paper shows that some other local fractional models can be obtained by generalizing the existing methods of generating nonlinear partial differential equations with integer orders.
文摘In this work,we study a new(2+1)-dimensional generalized breaking soliton equation which admits the Painleve property for one special set of parameters.We derive multiple soliton solutions,traveling wave solutions,and periodic solutions as well.We use the simplified Hirotas method and a variety of ansatze to achieve our goal.
基金Supported by National Natural Science Foundation of China under Grant Nos.11271211,11275072,11435005K.C.Wong Magna Fund in Ningbo University
文摘In this paper, the truncated Painleve analysis and the consistent tanh expansion (CTE) method are developed for the (2+1)-dimensional breaking soliton equation. As a result, the soliton-cnoidal wave interaction solution of the equation is explicitly given, which is dimcult to be found by other traditional methods. When the value of the Jacobi elliptic function modulus rn = 1, the soliton-cnoidal wave interaction solution reduces back to the two-soliton solution. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.
基金Supported by National Natural Science Foundation of China under Grant No.61377067
文摘Under investigation is the(2+1)-dimensional breaking soliton equation. Based on a special ans?tz functions and the bilinear form, some entirely new double-periodic soliton solutions for the(2+1)-dimensional breaking soliton equation are presented. With the help of symbolic computation software Mathematica, many important and interesting properties for these obtained solutions are revealed with some figures.
文摘In the present paper,new analytical solutions for the space-time fractional Boussinesq and(2+1)-dimensional breaking soliton equations are obtained by using the simplified tan(φ(ξ)2)-expansion method.Here,fractional derivatives are defined in the conformable sense.To show the correctness of the obtained traveling wave solutions,residual error function is defined.It is observed that the new solutions are very close to the exact solutions.The solutions obtained by the presented method have not been reported in former literature.
基金Foundation item: Supported by the Program of Shannxi Provincial Department of Education(11JK0482) Supported by the NSF of China(11101332) Supported by the Natural Science Foundation of Henan Province (2007140020)
文摘By using Xu's stable-range method,families of explicit exact solutions with multiple parameter functions for the(2+1)-dimensional breaking soliton and KadomtsevPetviashvili equations.These parameter functions make our solutions more applicable to related practical models and boundary value problems.
文摘In this article, the fractional derivatives are described in the modified Riemann-Liouville sense. We propose a new approach, namely an ansatz method, for solving fractional differential equations(FDEs) based on a fractional complex transform and apply it to solve nonlinear space-time fractional equations. As a result, the non-topological as well as the singular soliton solutions are obtained. This method can be suitable and more powerful for solving other kinds of nonlinear fractional FDEs arising in mathematical physics.
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘A new generalized transformation method is differential equation. As an application of the method, we presented to find more exact solutions of nonlinear partial choose the (3+1)-dimensional breaking soliton equation to illustrate the method. As a result many types of explicit and exact traveling wave solutions, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic function solutions, and rational solutions, are obtained. The new method can be extended to other nonlinear partial differential equations in mathematical physics.
文摘In this paper, by means of double elliptic equation expansion approach, the novel double nonlinear wave solutions of the (2+1)-dimensional break soliton equation are obtained. These double nonlinear wave solutions contain the double Jacobi elliptic function-like solutions, the double solitary wave-like solutions, and so on. The method is also powerful to some other nonlinear wave equations in (2+1) dimensions.
基金The project supported partially by the State Key Basic Research Program of China under Grant No. 2004 CB 318000The authors would like to thank the referee for his/her valuable suggestions.
文摘Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generalized method with the aid of Maple, we consider the (2+1)-dimentional breaking soliton equation. As a result, we successfully obtain some new and more general solutions including Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions, and so on. As an illustrative sampler the properties of some soliton solutions for the breaking soliton equation are shown by some figures. Our method can also be applied to other partial differential equations.
文摘By means of the homogeneous balance principle, a nonlinear transformation to the well known breaking soliton equation with physical interest was given. The original equation was turned into a homogeneity differential equation with this nonlinear transformation. By solving the homogeneity equation via the simplified Hirota method and applying the nonlinear transformation, one soliton, two soliton and three soliton solutions as well as some other types of explicit solutions to the breaking soliton equation were obtained with the assistance of Maple.