In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and t...In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(Ⅱ)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(Ⅱ)-CS microspheres from breakthrough curve was fulfilled by modelling calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with small/uniform size and fast adsorption kinetics like Ca(Ⅱ)-CS microspheres to cut down the gap between lab and industry.展开更多
Methane(CH_(4))as a substitute for other mineral fuels plays a crucial role in reducing energy consumption and preventing environmental pollution.The present study employs a solvothermal method to fabricate a porous f...Methane(CH_(4))as a substitute for other mineral fuels plays a crucial role in reducing energy consumption and preventing environmental pollution.The present study employs a solvothermal method to fabricate a porous framework Co-metal-organic framework(Co-MOF)containing two distinct secondary building units(SBUs):an anionic[Co_(2)(μ_(2)-OH)(COO)_(4)(H_(2)O)]and a neutral[CoN_(2)(COO)_(2)].Notably,within the anionic SBUs,the coordinated water molecules induce the generation of divergent unsaturated Co(Ⅱ)centers in the unidirectional porous channels,thereby creating open metal sites.The adsorption performance of Co-MOF towards pure component gases was systematically investigated.The results demonstrated that Co-MOF exhibits superior adsorption capacity for C_(2)-C_(3) hydrocarbons compared to CH_(4),which offers the potential for efficient adsorption and separation of CH_(4) from C_(2)-C_(3) hydrocarbons.The gas selectivity separation ratios of Co-MOF for C_(2)H_(6)/CH_(4) and C_(3)H_8/CH_(4) were calculated using the ideal adsorbed solution theory method at 273/298 K and 0.1 MPa.The results revealed that Co-MOF achieved remarkable equilibrium separation selectivity for CH_(4) and C_(2)-C_(3) hydrocarbon gases among non-modified MOFs,signifying the potential of the synthesized Co-MOF for efficient recovery and purification of CH_(4) from C_(2)-C_(3) hydrocarbons.Breakthrough experiments further demonstrate the ability of Co-MOF to purify methane from C_(2)-C_(3) hydrocarbons in practical gas separation scenarios.Additionally,molecular simulation calculations further substantiate the propensity of anionic SBUs to interact with C_(2)-C_(3) hydrocarbon compounds.This study provides a novel paradigm for the development of porous MOF materials in the application of gas mixture separation.展开更多
The breakthrough curves of benzene and water on modified activated carbons(ACs) were investigated.Temperature-programmed desorption(TPD) experiments were conducted to measure the TPD curves of benzene and water on...The breakthrough curves of benzene and water on modified activated carbons(ACs) were investigated.Temperature-programmed desorption(TPD) experiments were conducted to measure the TPD curves of benzene and water on modified and unmodified ACs and to estimate the activation energy for the desorption of benzene on the modified ACs.Starting with unmodified ACs,two modified ACs were prepared by using two different types of silane,designated by KH560 and 1706.The results showed that the activation energy for the desorption of benzene on KH560/AC and 1706/AC was higher than that on unmodified AC.In addition,the activation energy for the desorption of water on KH560/AC and 1706/AC was lower than that on unmodified AC.The breakthrough curves of benzene obtained from the experimental observations under different humidity conditions were compared with the results of the TPD experiments.The results show that the modified ACs are less affected by water,whereas the unmodified ACs are more affected by water,indicating that surface modification by organosilane compounds can improve the adsorption of benzene on the activated carbo,which weakens the adsorption of water.展开更多
In this study,the potential of a low-cost bio-adsorbent,taken directly from Date Palm Trunk Fibers(DPTF)agricultural wastes,for cadmium ions removal from wastewaters is examined.The performances of this adsorbent are ...In this study,the potential of a low-cost bio-adsorbent,taken directly from Date Palm Trunk Fibers(DPTF)agricultural wastes,for cadmium ions removal from wastewaters is examined.The performances of this adsorbent are evaluated by building breakthrough curves at different bed heights and flow rates while keeping other parameters,such as the initial feed concentration,pH,and particle size,constant.The results indicate that the maximum cadmium adsorption capacity of DTPF can be obtained from the Thomas model as 51.5 mg/g with the most extended mass transfer zone of 83 min at the lowest flow rate at 5 ml/min.The saturation concentrations(NO)and the rate constant(kab)obtained from the BDST(bed depth service time)model are 7022.16 mg/l and 0.0536 l/mg.min,respectively.Using the Yon-Nelsen Model,it is found that operating at a lower flow rate leads to a larger value of the elapsed needed time to reach a 50%breakthrough.The Wolborska model indicates that the bed capacity increases with decreasing the flow rate,and the adsorbent can achieve a greater external mass transfer kinetic coefficient(2.271/min)at a higher flow rate.展开更多
This work mainly involves the study of effect of relative humidity on adsorption of formaldehyde on the activated carbons modified with organosilane solution. Modification of activated carbons was carded out by impreg...This work mainly involves the study of effect of relative humidity on adsorption of formaldehyde on the activated carbons modified with organosilane solution. Modification of activated carbons was carded out by impregnating activated carbon with organosilane/methanol-containing solutions. The breakthrough curves of formaldehyde in the packed beds of original and modified activated carbons were measured, respectively, at relative humidity of 30%, 60%, and 80%. Temperature-programmed desorption (TPD) experiments were used to estimate the activation energy for desorption of formaldehyde from the activated carbon. Results showed that the relative humidity had strongly influence on breakthrough curves of formaldehyde in the packed beds. The higher the relative humidity of gas mixtures through the packed beds was, the smaller the breakthrough time of formaldehyde became. The use of organosilane compounds to modify surfaces of the activated carbon can enhance the interaction between formaldehyde and the surfaces, and as a result, the breakthrough times of formaldehyde in the packed beds of the modified activated carbon were longer than that in the packed bed of the unmodified activated carbon.展开更多
The adsorption of dibenzofuran (DBF) on three commercial granular activated carbons (GAC) was investigated to correlate the adsorption equilibrium and kinetics with the morphological characteristics of activated c...The adsorption of dibenzofuran (DBF) on three commercial granular activated carbons (GAC) was investigated to correlate the adsorption equilibrium and kinetics with the morphological characteristics of activated carbons. Breakthrough experiment was conducted to determine the isotherm and kinetics of dibenzofuran on the activated carbons. All-the experiment runs were performed in a fixed bed with a process temperature of 368 K. The effects of adsorbent morphological properties on the kinetics of the adsorption process were studied. The equilibrium data are found satisfactory fitted to the Langmuir isotherm. An intraparticle diffusion model based on the obtained Langmuir isotherm was'developed for predicting the fixed bed adsorption of dibenzofuran. The result indicated that this model fit all the breakthrough curves well. The surface diffusion coefficients of dibenzofuran on the activated carbon are calculated, and a relationship with the microporosity is found. As it was expected, the dibenzofuran molecule finds more kinetic restrictions for the diffusion in those carbons with narrower pore diameter.展开更多
The isotherm,mechanism and kinetics of carbon tetrachloride(CT) adsorption by polyacrylonitrile-based activated carbon fiber(PAN-ACF) were investigated in batch reactors and a continuous flow reactor,and the regenerat...The isotherm,mechanism and kinetics of carbon tetrachloride(CT) adsorption by polyacrylonitrile-based activated carbon fiber(PAN-ACF) were investigated in batch reactors and a continuous flow reactor,and the regeneration of PAN-ACF was also studied.Freundlich and Dubinin-Radushkevich(D-R) adsorption equations can well describe the adsorption isotherm.CT is mainly adsorbed on the exterior surface of PAN-ACF with low boundary layer effect and rate-controlling step of intra-particle diffusion.The adsorption dynamics in the batch reactor well fits with the pseudo-first-order model,and the breakthrough curves in the continuous flow reactor can be well described by the Yoon-Nelson model.The ACF can be recycled through thermal regeneration,whereas the adsorption capacity decreases from 7.87 to 4.98 mg/g after the fourth regeneration.78%-94%of CT can be removed from the wastewater of a fluorine chemical plant on a pilot scale,which confirms the efficacy of ACF under industrial conditions.The results indicate that PAN-ACF is applicable to CT removal from wastewater.展开更多
The breakthrough adsorption behaviors of gas phase trichloroethylene in a packed bed of activated carbon fibers(ACF) were investigated. The specific surface area of the ACF was 600 m 2/g, 1400 m 2/g and 1600 m 2/g,...The breakthrough adsorption behaviors of gas phase trichloroethylene in a packed bed of activated carbon fibers(ACF) were investigated. The specific surface area of the ACF was 600 m 2/g, 1400 m 2/g and 1600 m 2/g, respectively, and the concentration of trichloroethylene ranged from 270 mg/m 3 to 2700 mg/m 3. Results showed that the capacity of adsorption increased with increasing specific surface area, the relationship between the logarithms of 10% breakthrough time and concentration was approximately linear over the experimental range, the breakthrough time decreased with increasing temperature and humidity. The breakthrough curves at different inlet concentration or different temperature can be predicted by several simple theoretical models with good agreements.展开更多
Both physical and chemical processes affect the fate and transport of herbicides. It is useful to simulate these processes with computer programs to predict solute movement. Simulations were run with HYDRUS- 1 D to id...Both physical and chemical processes affect the fate and transport of herbicides. It is useful to simulate these processes with computer programs to predict solute movement. Simulations were run with HYDRUS- 1 D to identify the sorption and degradation parameters of atrazine through calibration from the breakthrough curves (BTCs). Data from undisturbed and disturbed soil column experiments were compared and analyzed using the dual-porosity model. The study results show that the values of dispersivity are slightly lower in disturbed columns, suggesting that the more heterogeneous the structure is, the higher the dispersivity. Sorption parameters also show slight variability, which is attributed to the differences in soil properties, experimental conditions and methods, or other ecological factors. For both of the columns, the degradation rates were similar. Potassium bromide was used as a conservative non-reactive tracer to characterize the water movement in columns. Atrazine BTCs exhibited significant tailing and asymmetry, indicating non-equilibrium sorption during solute transport. The dual-porosity model was verified to best fit the BTCs of the column experiments. Greater or lesser concentration of atrazine spreading to the bottom of the columns indicated risk of groundwater contamination. Overall, HYDRUS-1D successfully simulated the atrazine transport in soil columns.展开更多
The separation of hydrogen and deuterium by cryogenic adsorption was conducted, using the molecular sieve 5A as adsorbent, helium as the carder gas in a fixed column. The breakthrough curves of hydrogen, deuterium and...The separation of hydrogen and deuterium by cryogenic adsorption was conducted, using the molecular sieve 5A as adsorbent, helium as the carder gas in a fixed column. The breakthrough curves of hydrogen, deuterium and the mixture of two components in helium carder gas were measured, a separation factor, approximately 2, for the hydrogen-deuterium binary mixture was obtained. The equilibrium model was built for simulation of the concentration distribution for single hydrogen, deuterium and their mixture with helium carder in the fixed column, and the simulation compared well with the experimental results.展开更多
In this study, the lattice Boltzmann method (LBM) was used to simulate the solute transport in a single rough fracture. The self-affine rough fracture wall was generated with the successive random addition method. T...In this study, the lattice Boltzmann method (LBM) was used to simulate the solute transport in a single rough fracture. The self-affine rough fracture wall was generated with the successive random addition method. The ability of the developed LBM to simulate the solute transport was validated by Taylor dispersion. The effect of fluid velocity on the solute transport in a single rough fracture was investigated using the LBM. The breakthrough curves (BTCs) for continuous injection sources in rough fractures were analyzed and discussed with different Reynolds numbers (Re). The results show that the rough frac~'e wall leads to a large fluid velocity gradient across the aperture. Consequently, there is a broad distribution of the immobile region along the rough fracture wall. This distribution of the immobile region is very sensitive to the Re and fracture geometry, and the immobile region is enlarged with the increase of Re and roughness. The concentration of the solute front in the mobile region increases with the Re. Furthermore, the Re and roughness have significant effects on BTCs, and the slow solute molecule exchange between the mobile and immobile regions results in a long breakthrough tail for the rough fracture. This study also demonstrates that the developed LBM can be effective in studying the solute transport in a rough fracture.展开更多
The infiltration of water contaminants into soil and groundwater systems can greatly affect the quality of groundwater. A laboratory-designed large soil tank with periodic and continuous infiltration models, respectiv...The infiltration of water contaminants into soil and groundwater systems can greatly affect the quality of groundwater. A laboratory-designed large soil tank with periodic and continuous infiltration models, respectively, was used to simulate the migration of the contaminants NH4 and NO3 in a soil and groundwater system, including unsaturated and saturated zones. The unsaturated soil zone had a significant effect on removing NH4 and NO3 infiltrated from the surface water. The patterns of breakthrough curves of NH4 and NO3 in the unsaturated zone were related to the infiltration time. A short infiltration time resulted in a single sharp peak in the breakthrough curve, while a long infiltration time led to a plateau curve. When NH4 and NO3 migrated from the unsaturated zone to the saturated zone, an interracial retardation was formed, resulting in an increased contaminant concentration on the interface. Under the influence of horizontal groundwater movement, the infiltrated contaminants formed a contamination-prone area downstream. As the contaminants migrated downstream, their concentrations were significantly reduced. Under the same infiltration concentration, the concentration of NO3 was greater than that of NH4 at every corresponding cross-section in the soil and groundwater tank, suggesting that the removal efficiency of NH4 was greater than that of NO3 in the soil and groundwater system.展开更多
Adsorption operation is of great importance for separation and purification of semi-synthetic cephalosporin compounds in pharmaceutical industry. The adsorption dynamics of Cefoselis hydrochloride(CFH) on XR 920 C ads...Adsorption operation is of great importance for separation and purification of semi-synthetic cephalosporin compounds in pharmaceutical industry. The adsorption dynamics of Cefoselis hydrochloride(CFH) on XR 920 C adsorbent in fixed bed was predicted by the model of modified film-pore diffusion(MFPD). The intraparticle diffusion equation and mass balance equation in fixed bed are discretized into two ordinary differential equations(ODEs) using the method of orthogonal collocation which largely improves the calculation accuracy. The MFPD model parameters including the pore diffusion coefficient(Dp), external mass-transfer coefficient(kf), and the axial dispersion(DL) were estimated. The kfvalue was calculated by the Carberry equation, in which the effective diffusion coefficient Dewas fitted based on Crank Model through experimental data. Moreover, three key operating parameters(i.e., initial adsorbate concentration; flow rate of import feed, and bed height of adsorbent) and the corresponded breakthrough curves were systematically studied and optimized. Therefore,this research not only provides valuable experimental data, but also a successfully mathematical model for designing the continuous chromatographic adsorption process of CFH.展开更多
The effects of pulse ultrasound with different pulse parameters on the breakthrough curves of Geniposide on Resin 1300 were studied. The mass transfer model describing the adsorption process was constructed. Adsorptio...The effects of pulse ultrasound with different pulse parameters on the breakthrough curves of Geniposide on Resin 1300 were studied. The mass transfer model describing the adsorption process was constructed. Adsorption capability and the overall mass-transfer coefficient were obtained by fitting the constructed mass-transfer model and the experimental data. The effects of pulse ultrasound on adsorption of Geniposide on Resin1300 in a fixed bed were studied and compared. Amount of Geniposide adsorbed on Resin 1300 in the presence of ultrasound is lower than that in the absence of ultrasound, but the mass-transfer rate with ultrasonic irradiation is higher than that without ultrasound. Furthermore, mass transfer rate is enhanced by pulse modulation. In the conditions studied, the adsorption equilibrium constant decreases with increasing ultrasonic power, while the overall mass-transfer co-efficient increases. With increasing pulse duty ratio, adsorption equilibrium constant decreases initially, reaches a minimum when pulse duty ratio is 0.5, and then increases. On the contrary, the overall mass-transfer coefficient in-creases initially and reaches a maximum when pulse ratio is 0.5, and then decreases. Effects of pulse period on ad-sorption equilibrium and mass transfer rate reached the peak at pulse period of 28.6 ms.展开更多
Removal of dye from the industrial wastewater is one of the most important subjects in water pollution regulation.Successive adsorption/desorption cycles of a basic dye, methylene blue, on the internal almond shell, s...Removal of dye from the industrial wastewater is one of the most important subjects in water pollution regulation.Successive adsorption/desorption cycles of a basic dye, methylene blue, on the internal almond shell, sheep manure waste and sawdust were investigated using fixed bed column experiments in order to study the adsorption capacity to remove MB and adsorbent regeneration efficiency. The adsorption breakthrough curves were predicted by the Thomas model, Yoon Nelson model, and Wolborska model and modified dose–response model using non-linear regression analysis. The results showed that the modified dose–response model was more suitable for the description of breakthrough curves for three adsorbents only in the first cycle. Although sheep manure waste presents the highest adsorption capacity, it is hard to regenerate and needs more time regeneration. Conversely, the internal almond shell presents lower adsorption capacity, but they are more readily regenerated.展开更多
Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide ...Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines, controlling contamination of mine water, and accomplishing ecological restoration of mining areas. A typical physical model of the layered structures with porous and fractured media was created in this study. Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure. The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time. The experimental results showed that the lower fractured media, with a considerably higher permeability than that of the upper porous media, had significant effects on preventing water infil- tration. Moreover, although the porous media were homogeneous statistically in the whole domain, spatial variations in the features of effluent concentrations with regards to time, or so called breakthrough curves, at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed, indicating the diversity of solute transport at small scales. Furthermore, the breakthrough curves of the outflow at the bottom, located beneath the underlying fractured rock, were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media, which exhibited multiple peaks, while the peak values were reduced one by one with time.展开更多
The influence of operation parameters on the adsorption performance of protein (bovin serum albumin, BSA) in an expanded bed was studied using Streamline diethyl aminoethyl (DEAE). The result of residence time distrib...The influence of operation parameters on the adsorption performance of protein (bovin serum albumin, BSA) in an expanded bed was studied using Streamline diethyl aminoethyl (DEAE). The result of residence time distributions (RTD) and breakthrough curves showed that adsorption performance of the expanded bed could not be improved by increasing the flow velocity at the range from 16ml·min-1 to 26ml·min-1. The increase of protein concentration from 0.5 mg·ml to 2 mg·ml-1 resulted in poor adsorption performance. With increasing temperature from 5℃ to 30℃ and the sedimented bed height from 11.5cm to 22.5cm, the adsorption characteristics in the expanded bed were improved.展开更多
Five microporous MOFs were synthesized and their static adsorption properties for light hydrocarbons were experimentally investigated at 298 K and 150 kPa.Among the five MOFs,HKUST-1 and Ni(bdc)(ted)0.5 exhibited much...Five microporous MOFs were synthesized and their static adsorption properties for light hydrocarbons were experimentally investigated at 298 K and 150 kPa.Among the five MOFs,HKUST-1 and Ni(bdc)(ted)0.5 exhibited much higher uptakes of ethane and propane than PCN-250,UiO-66,and ZIF-8.Breakthrough experiments were carried out at 298 K and atmospheric pressure on HKUST-1 and two commercially used adsorbents.HKUST-1 exhibited a much lower dynamic than static adsorption capacity.Moreover,HKUST-1 and the two traditional adsorbents could effectively separate binary(ethane/propane)and ternary(ethane/propane/toluene)mixtures.展开更多
We selected a dark coniferous forest ecosystem of Gongga Mountain in the upper reaches of the Yangtze River as our research area to study the preferential flow and solute preferential transport by adding the tracers K...We selected a dark coniferous forest ecosystem of Gongga Mountain in the upper reaches of the Yangtze River as our research area to study the preferential flow and solute preferential transport by adding the tracers KNO3 and KBr to the self-made soil column equipment in different ways to examine density and volume changes of inflows and outflows of a mass input (impulse input) and a stable, well-distributed input (step input)). The results showed that this dark coniferous forest ecosystem of Gongga Mountain is a typical area of preferential flow and solute preferential transport, a process that can be classified into five parts. A great amount of solute was transported at high speed as the result of preferential flow in the soil and caused the density of the solute in both deep water and in groundwater to rise rapidly, which definitely increased pollution in the deep soil layer.展开更多
基金the National Natural Science Foundation of China(2117613621422603)the National Science and Technology Support Program of China(2011BAC06B01)
文摘In this work, an equilibrium-dispersion model was successfully established to describe the breakthrough performance of Ca(Ⅱ) imprinted chitosan (Ca(Ⅱ)-CS) microspheres packed column for metal adsorption, and the assumptions of Langmuir isotherms and axial dispersion controlled mass transfer process were confirmed. The axial dispersion coefficient in Ca(Ⅱ)-CS microspheres packed column was found to be almost proportional to the linear velocity and fit for prediction through single breakthrough test. Sensitivity analysis for breakthrough curve indicated the axial dispersion coefficient as well as Langmuir coefficient was sensitive variable for deep removal requirement. The retrieval of the adsorption isotherms of Ca(Ⅱ)-CS microspheres from breakthrough curve was fulfilled by modelling calibration. A strategy based on the correlation between adsorption isotherms and breakthrough performance was further proposed to simplify the column adsorption design using absorbents with small/uniform size and fast adsorption kinetics like Ca(Ⅱ)-CS microspheres to cut down the gap between lab and industry.
基金supported by the National Natural Science Foundation of China(21401099)the Natural Science Foundation of Shanxi Province(202203021212331)+3 种基金Science and Technology Innovation Project of Colleges and Universities of Shanxi Province(2022L532)the National Natural Science Foundation of Anhui Province(2008085MB32 and KJ2021ZD0073)Natural Science Foundation of Shandong Province(ZR2021QB159)supported by the Talent Program Foundation of Dezhou University(2021xjrc102)。
文摘Methane(CH_(4))as a substitute for other mineral fuels plays a crucial role in reducing energy consumption and preventing environmental pollution.The present study employs a solvothermal method to fabricate a porous framework Co-metal-organic framework(Co-MOF)containing two distinct secondary building units(SBUs):an anionic[Co_(2)(μ_(2)-OH)(COO)_(4)(H_(2)O)]and a neutral[CoN_(2)(COO)_(2)].Notably,within the anionic SBUs,the coordinated water molecules induce the generation of divergent unsaturated Co(Ⅱ)centers in the unidirectional porous channels,thereby creating open metal sites.The adsorption performance of Co-MOF towards pure component gases was systematically investigated.The results demonstrated that Co-MOF exhibits superior adsorption capacity for C_(2)-C_(3) hydrocarbons compared to CH_(4),which offers the potential for efficient adsorption and separation of CH_(4) from C_(2)-C_(3) hydrocarbons.The gas selectivity separation ratios of Co-MOF for C_(2)H_(6)/CH_(4) and C_(3)H_8/CH_(4) were calculated using the ideal adsorbed solution theory method at 273/298 K and 0.1 MPa.The results revealed that Co-MOF achieved remarkable equilibrium separation selectivity for CH_(4) and C_(2)-C_(3) hydrocarbon gases among non-modified MOFs,signifying the potential of the synthesized Co-MOF for efficient recovery and purification of CH_(4) from C_(2)-C_(3) hydrocarbons.Breakthrough experiments further demonstrate the ability of Co-MOF to purify methane from C_(2)-C_(3) hydrocarbons in practical gas separation scenarios.Additionally,molecular simulation calculations further substantiate the propensity of anionic SBUs to interact with C_(2)-C_(3) hydrocarbon compounds.This study provides a novel paradigm for the development of porous MOF materials in the application of gas mixture separation.
基金Funded by the National Natural Science Foundation of China (No.20576041)
文摘The breakthrough curves of benzene and water on modified activated carbons(ACs) were investigated.Temperature-programmed desorption(TPD) experiments were conducted to measure the TPD curves of benzene and water on modified and unmodified ACs and to estimate the activation energy for the desorption of benzene on the modified ACs.Starting with unmodified ACs,two modified ACs were prepared by using two different types of silane,designated by KH560 and 1706.The results showed that the activation energy for the desorption of benzene on KH560/AC and 1706/AC was higher than that on unmodified AC.In addition,the activation energy for the desorption of water on KH560/AC and 1706/AC was lower than that on unmodified AC.The breakthrough curves of benzene obtained from the experimental observations under different humidity conditions were compared with the results of the TPD experiments.The results show that the modified ACs are less affected by water,whereas the unmodified ACs are more affected by water,indicating that surface modification by organosilane compounds can improve the adsorption of benzene on the activated carbo,which weakens the adsorption of water.
文摘In this study,the potential of a low-cost bio-adsorbent,taken directly from Date Palm Trunk Fibers(DPTF)agricultural wastes,for cadmium ions removal from wastewaters is examined.The performances of this adsorbent are evaluated by building breakthrough curves at different bed heights and flow rates while keeping other parameters,such as the initial feed concentration,pH,and particle size,constant.The results indicate that the maximum cadmium adsorption capacity of DTPF can be obtained from the Thomas model as 51.5 mg/g with the most extended mass transfer zone of 83 min at the lowest flow rate at 5 ml/min.The saturation concentrations(NO)and the rate constant(kab)obtained from the BDST(bed depth service time)model are 7022.16 mg/l and 0.0536 l/mg.min,respectively.Using the Yon-Nelsen Model,it is found that operating at a lower flow rate leads to a larger value of the elapsed needed time to reach a 50%breakthrough.The Wolborska model indicates that the bed capacity increases with decreasing the flow rate,and the adsorbent can achieve a greater external mass transfer kinetic coefficient(2.271/min)at a higher flow rate.
基金Supported by the National Natural Science Foundation of China (20576041) and the National High Technology Research and Development Program of China (2006AA06A310).
文摘This work mainly involves the study of effect of relative humidity on adsorption of formaldehyde on the activated carbons modified with organosilane solution. Modification of activated carbons was carded out by impregnating activated carbon with organosilane/methanol-containing solutions. The breakthrough curves of formaldehyde in the packed beds of original and modified activated carbons were measured, respectively, at relative humidity of 30%, 60%, and 80%. Temperature-programmed desorption (TPD) experiments were used to estimate the activation energy for desorption of formaldehyde from the activated carbon. Results showed that the relative humidity had strongly influence on breakthrough curves of formaldehyde in the packed beds. The higher the relative humidity of gas mixtures through the packed beds was, the smaller the breakthrough time of formaldehyde became. The use of organosilane compounds to modify surfaces of the activated carbon can enhance the interaction between formaldehyde and the surfaces, and as a result, the breakthrough times of formaldehyde in the packed beds of the modified activated carbon were longer than that in the packed bed of the unmodified activated carbon.
基金Supported by the National Natural Science Foundation of China (29936100) and the Natural Science Foundation of Guangdong Province (7010327). The authors would like to thank to Pro. GU0 Haifu in Chemistry and Chemical Engineering department of Zhaoqing University for providing the necessary facilities to conduct part of the experimental work reported in this study.
文摘The adsorption of dibenzofuran (DBF) on three commercial granular activated carbons (GAC) was investigated to correlate the adsorption equilibrium and kinetics with the morphological characteristics of activated carbons. Breakthrough experiment was conducted to determine the isotherm and kinetics of dibenzofuran on the activated carbons. All-the experiment runs were performed in a fixed bed with a process temperature of 368 K. The effects of adsorbent morphological properties on the kinetics of the adsorption process were studied. The equilibrium data are found satisfactory fitted to the Langmuir isotherm. An intraparticle diffusion model based on the obtained Langmuir isotherm was'developed for predicting the fixed bed adsorption of dibenzofuran. The result indicated that this model fit all the breakthrough curves well. The surface diffusion coefficients of dibenzofuran on the activated carbon are calculated, and a relationship with the microporosity is found. As it was expected, the dibenzofuran molecule finds more kinetic restrictions for the diffusion in those carbons with narrower pore diameter.
基金Project(2004C33068) supported by the Science and Technology Programs of Zhejiang Province,ChinaProject(20100933B17) supported by the Social Development and Science Research Program of Hangzhou,China
文摘The isotherm,mechanism and kinetics of carbon tetrachloride(CT) adsorption by polyacrylonitrile-based activated carbon fiber(PAN-ACF) were investigated in batch reactors and a continuous flow reactor,and the regeneration of PAN-ACF was also studied.Freundlich and Dubinin-Radushkevich(D-R) adsorption equations can well describe the adsorption isotherm.CT is mainly adsorbed on the exterior surface of PAN-ACF with low boundary layer effect and rate-controlling step of intra-particle diffusion.The adsorption dynamics in the batch reactor well fits with the pseudo-first-order model,and the breakthrough curves in the continuous flow reactor can be well described by the Yoon-Nelson model.The ACF can be recycled through thermal regeneration,whereas the adsorption capacity decreases from 7.87 to 4.98 mg/g after the fourth regeneration.78%-94%of CT can be removed from the wastewater of a fluorine chemical plant on a pilot scale,which confirms the efficacy of ACF under industrial conditions.The results indicate that PAN-ACF is applicable to CT removal from wastewater.
文摘The breakthrough adsorption behaviors of gas phase trichloroethylene in a packed bed of activated carbon fibers(ACF) were investigated. The specific surface area of the ACF was 600 m 2/g, 1400 m 2/g and 1600 m 2/g, respectively, and the concentration of trichloroethylene ranged from 270 mg/m 3 to 2700 mg/m 3. Results showed that the capacity of adsorption increased with increasing specific surface area, the relationship between the logarithms of 10% breakthrough time and concentration was approximately linear over the experimental range, the breakthrough time decreased with increasing temperature and humidity. The breakthrough curves at different inlet concentration or different temperature can be predicted by several simple theoretical models with good agreements.
基金the China Harbor Engineering Company (CHEC) for providing financial support
文摘Both physical and chemical processes affect the fate and transport of herbicides. It is useful to simulate these processes with computer programs to predict solute movement. Simulations were run with HYDRUS- 1 D to identify the sorption and degradation parameters of atrazine through calibration from the breakthrough curves (BTCs). Data from undisturbed and disturbed soil column experiments were compared and analyzed using the dual-porosity model. The study results show that the values of dispersivity are slightly lower in disturbed columns, suggesting that the more heterogeneous the structure is, the higher the dispersivity. Sorption parameters also show slight variability, which is attributed to the differences in soil properties, experimental conditions and methods, or other ecological factors. For both of the columns, the degradation rates were similar. Potassium bromide was used as a conservative non-reactive tracer to characterize the water movement in columns. Atrazine BTCs exhibited significant tailing and asymmetry, indicating non-equilibrium sorption during solute transport. The dual-porosity model was verified to best fit the BTCs of the column experiments. Greater or lesser concentration of atrazine spreading to the bottom of the columns indicated risk of groundwater contamination. Overall, HYDRUS-1D successfully simulated the atrazine transport in soil columns.
文摘The separation of hydrogen and deuterium by cryogenic adsorption was conducted, using the molecular sieve 5A as adsorbent, helium as the carder gas in a fixed column. The breakthrough curves of hydrogen, deuterium and the mixture of two components in helium carder gas were measured, a separation factor, approximately 2, for the hydrogen-deuterium binary mixture was obtained. The equilibrium model was built for simulation of the concentration distribution for single hydrogen, deuterium and their mixture with helium carder in the fixed column, and the simulation compared well with the experimental results.
基金supported by the National Natural Science Foundation of China(Grants No.51079043,41172204,and 51109139)the Natural Science Foundation of Jiangsu Province(Grant No.BK2011110)
文摘In this study, the lattice Boltzmann method (LBM) was used to simulate the solute transport in a single rough fracture. The self-affine rough fracture wall was generated with the successive random addition method. The ability of the developed LBM to simulate the solute transport was validated by Taylor dispersion. The effect of fluid velocity on the solute transport in a single rough fracture was investigated using the LBM. The breakthrough curves (BTCs) for continuous injection sources in rough fractures were analyzed and discussed with different Reynolds numbers (Re). The results show that the rough frac~'e wall leads to a large fluid velocity gradient across the aperture. Consequently, there is a broad distribution of the immobile region along the rough fracture wall. This distribution of the immobile region is very sensitive to the Re and fracture geometry, and the immobile region is enlarged with the increase of Re and roughness. The concentration of the solute front in the mobile region increases with the Re. Furthermore, the Re and roughness have significant effects on BTCs, and the slow solute molecule exchange between the mobile and immobile regions results in a long breakthrough tail for the rough fracture. This study also demonstrates that the developed LBM can be effective in studying the solute transport in a rough fracture.
基金the National Key Basic Research Program (973 Program) of China (No.2002CB412303)the National Natural Science Foundation of China (No.50709009)the Key Project of Chinese Ministry of Education (No.106088).
文摘The infiltration of water contaminants into soil and groundwater systems can greatly affect the quality of groundwater. A laboratory-designed large soil tank with periodic and continuous infiltration models, respectively, was used to simulate the migration of the contaminants NH4 and NO3 in a soil and groundwater system, including unsaturated and saturated zones. The unsaturated soil zone had a significant effect on removing NH4 and NO3 infiltrated from the surface water. The patterns of breakthrough curves of NH4 and NO3 in the unsaturated zone were related to the infiltration time. A short infiltration time resulted in a single sharp peak in the breakthrough curve, while a long infiltration time led to a plateau curve. When NH4 and NO3 migrated from the unsaturated zone to the saturated zone, an interracial retardation was formed, resulting in an increased contaminant concentration on the interface. Under the influence of horizontal groundwater movement, the infiltrated contaminants formed a contamination-prone area downstream. As the contaminants migrated downstream, their concentrations were significantly reduced. Under the same infiltration concentration, the concentration of NO3 was greater than that of NH4 at every corresponding cross-section in the soil and groundwater tank, suggesting that the removal efficiency of NH4 was greater than that of NO3 in the soil and groundwater system.
基金Supported by the National Natural Science Foundation of China(U1407122)the Innovation Project of Jiangsu Province(CXZZ13_0451)
文摘Adsorption operation is of great importance for separation and purification of semi-synthetic cephalosporin compounds in pharmaceutical industry. The adsorption dynamics of Cefoselis hydrochloride(CFH) on XR 920 C adsorbent in fixed bed was predicted by the model of modified film-pore diffusion(MFPD). The intraparticle diffusion equation and mass balance equation in fixed bed are discretized into two ordinary differential equations(ODEs) using the method of orthogonal collocation which largely improves the calculation accuracy. The MFPD model parameters including the pore diffusion coefficient(Dp), external mass-transfer coefficient(kf), and the axial dispersion(DL) were estimated. The kfvalue was calculated by the Carberry equation, in which the effective diffusion coefficient Dewas fitted based on Crank Model through experimental data. Moreover, three key operating parameters(i.e., initial adsorbate concentration; flow rate of import feed, and bed height of adsorbent) and the corresponded breakthrough curves were systematically studied and optimized. Therefore,this research not only provides valuable experimental data, but also a successfully mathematical model for designing the continuous chromatographic adsorption process of CFH.
基金Supported by the National lqatural Science Foundation of China (20346003).
文摘The effects of pulse ultrasound with different pulse parameters on the breakthrough curves of Geniposide on Resin 1300 were studied. The mass transfer model describing the adsorption process was constructed. Adsorption capability and the overall mass-transfer coefficient were obtained by fitting the constructed mass-transfer model and the experimental data. The effects of pulse ultrasound on adsorption of Geniposide on Resin1300 in a fixed bed were studied and compared. Amount of Geniposide adsorbed on Resin 1300 in the presence of ultrasound is lower than that in the absence of ultrasound, but the mass-transfer rate with ultrasonic irradiation is higher than that without ultrasound. Furthermore, mass transfer rate is enhanced by pulse modulation. In the conditions studied, the adsorption equilibrium constant decreases with increasing ultrasonic power, while the overall mass-transfer co-efficient increases. With increasing pulse duty ratio, adsorption equilibrium constant decreases initially, reaches a minimum when pulse duty ratio is 0.5, and then increases. On the contrary, the overall mass-transfer coefficient in-creases initially and reaches a maximum when pulse ratio is 0.5, and then decreases. Effects of pulse period on ad-sorption equilibrium and mass transfer rate reached the peak at pulse period of 28.6 ms.
文摘Removal of dye from the industrial wastewater is one of the most important subjects in water pollution regulation.Successive adsorption/desorption cycles of a basic dye, methylene blue, on the internal almond shell, sheep manure waste and sawdust were investigated using fixed bed column experiments in order to study the adsorption capacity to remove MB and adsorbent regeneration efficiency. The adsorption breakthrough curves were predicted by the Thomas model, Yoon Nelson model, and Wolborska model and modified dose–response model using non-linear regression analysis. The results showed that the modified dose–response model was more suitable for the description of breakthrough curves for three adsorbents only in the first cycle. Although sheep manure waste presents the highest adsorption capacity, it is hard to regenerate and needs more time regeneration. Conversely, the internal almond shell presents lower adsorption capacity, but they are more readily regenerated.
基金Supported by ihe Major State Basic Research Development Program of China (973 Program) (2010CB428801, 2010CB428804) the National Science Foundation of China (40972166)+1 种基金 the Major Science and Technology Program for Water Pollution Control and Treatment (2009ZX07212-003) the Technology Development and Applications for Ecology System Reconstruction and Restoration of Yongding River (D08040903700000)
文摘Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines, controlling contamination of mine water, and accomplishing ecological restoration of mining areas. A typical physical model of the layered structures with porous and fractured media was created in this study. Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure. The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time. The experimental results showed that the lower fractured media, with a considerably higher permeability than that of the upper porous media, had significant effects on preventing water infil- tration. Moreover, although the porous media were homogeneous statistically in the whole domain, spatial variations in the features of effluent concentrations with regards to time, or so called breakthrough curves, at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed, indicating the diversity of solute transport at small scales. Furthermore, the breakthrough curves of the outflow at the bottom, located beneath the underlying fractured rock, were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media, which exhibited multiple peaks, while the peak values were reduced one by one with time.
基金Supported by the National Natural Science Foundation of China(No.29736180).
文摘The influence of operation parameters on the adsorption performance of protein (bovin serum albumin, BSA) in an expanded bed was studied using Streamline diethyl aminoethyl (DEAE). The result of residence time distributions (RTD) and breakthrough curves showed that adsorption performance of the expanded bed could not be improved by increasing the flow velocity at the range from 16ml·min-1 to 26ml·min-1. The increase of protein concentration from 0.5 mg·ml to 2 mg·ml-1 resulted in poor adsorption performance. With increasing temperature from 5℃ to 30℃ and the sedimented bed height from 11.5cm to 22.5cm, the adsorption characteristics in the expanded bed were improved.
基金This work was supported by the National Agency of Scientific and Technological Promotion(Grant No.PICT 2016-1611)the Santa Fe Province Agency of Science,Technology and Innovation(Grant No.AC 2015-0005)National University of Rosario(Grant No.BIO517).
基金supported by the National Natural Science Foundation of China(grant number:21701189).
文摘Five microporous MOFs were synthesized and their static adsorption properties for light hydrocarbons were experimentally investigated at 298 K and 150 kPa.Among the five MOFs,HKUST-1 and Ni(bdc)(ted)0.5 exhibited much higher uptakes of ethane and propane than PCN-250,UiO-66,and ZIF-8.Breakthrough experiments were carried out at 298 K and atmospheric pressure on HKUST-1 and two commercially used adsorbents.HKUST-1 exhibited a much lower dynamic than static adsorption capacity.Moreover,HKUST-1 and the two traditional adsorbents could effectively separate binary(ethane/propane)and ternary(ethane/propane/toluene)mixtures.
基金the financial support provided by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20060022006)National Natural Sciences Foundation of China (Grant No. 30471379)
文摘We selected a dark coniferous forest ecosystem of Gongga Mountain in the upper reaches of the Yangtze River as our research area to study the preferential flow and solute preferential transport by adding the tracers KNO3 and KBr to the self-made soil column equipment in different ways to examine density and volume changes of inflows and outflows of a mass input (impulse input) and a stable, well-distributed input (step input)). The results showed that this dark coniferous forest ecosystem of Gongga Mountain is a typical area of preferential flow and solute preferential transport, a process that can be classified into five parts. A great amount of solute was transported at high speed as the result of preferential flow in the soil and caused the density of the solute in both deep water and in groundwater to rise rapidly, which definitely increased pollution in the deep soil layer.