Tumor protein p53 (TP53) mediates DNA repair and cell proliferation in growing cells. The TP53 gene is a tumor suppressor that regulates the expression of target genes in response to multiple cellular stress factors. ...Tumor protein p53 (TP53) mediates DNA repair and cell proliferation in growing cells. The TP53 gene is a tumor suppressor that regulates the expression of target genes in response to multiple cellular stress factors. Key target genes are involved in crucial cellular events such as DNA repair, cell cycle regulation, apoptosis, metabolism, and senescence. TP53 genetic variants and the activity of the wild-type p53 protein (WT-p53) have been linked to a wide range of tumorigenesis. Various genetic and epigenetic alterations, including germline and somatic mutations, loss of heterozygosity, and DNA methylation, can alter TP53 activity, potentially resulting in cancer initiation and progression. This study was designed to screen three reported mutations in the DNA-binding domain of the p53 protein in breast cancer, to evaluate the relative susceptibility and risk associated with breast cancer in the local population. Genomic DNA was isolated from 30 breast tumor tissues along with controls. Tetra and Tri ARMS PCR were performed to detect mutations in the TP53 coding region. For SNPs c.637C>T and c.733C>T, all analyzed cases were homozygous for the wild-type allele ‘C,’ while for SNP c.745A>G, all cases were homozygous for the wild-type allele ‘A.’ These results indicate no relevance of these three SNPs to cancer progression in our study cohort. Additionally, the findings from whole exon sequencing will help to predict more precise outcomes and assess the importance of TP53 gene mutations in breast cancer patients.展开更多
p53 is mutated in half of cancer cases.However,no p53-targeting drugs have been approved.Here,we reposition decitabine for triple-negative breast cancer(TNBC),a subtype with frequent p53 mutations and extremely poor p...p53 is mutated in half of cancer cases.However,no p53-targeting drugs have been approved.Here,we reposition decitabine for triple-negative breast cancer(TNBC),a subtype with frequent p53 mutations and extremely poor prognosis.In a retrospective study on tissue microarrays with 132 TNBC cases,DNMT1 overexpression was associated with p53 mutations(P=0.037)and poor overall survival(OS)(P=0.010).In a prospective DEciTabinE and Carboplatin in TNBC(DETECT)trial(NCT03295552),decitabine with carboplatin produced an objective response rate(ORR)of 42%in 12 patients with stage IV TNBC.Among the 9 trialed patients with available TP53 sequencing results,the 6 patients with p53 mutations had higher ORR(3/6 vs.0/3)and better OS(16.0 vs.4.0 months)than the patients with wild-type p53.In a mechanistic study,isogenic TNBC cell lines harboring DETECT-derived p53 mutations exhibited higher DNMT1 expression and decitabine sensitivity than the cell line with wild-type p53.In the DETECT trial,decitabine induced strong immune responses featuring the striking upregulation of the innate immune player IRF7 in the p53-mutated TNBC cell line(upregulation by 16-fold)and the most responsive patient with TNBC.Our integrative studies reveal the potential of repurposing decitabine for the treatment of p53-mutated TNBC and suggest IRF7 as a potential biomarker for decitabine-based treatments.展开更多
文摘Tumor protein p53 (TP53) mediates DNA repair and cell proliferation in growing cells. The TP53 gene is a tumor suppressor that regulates the expression of target genes in response to multiple cellular stress factors. Key target genes are involved in crucial cellular events such as DNA repair, cell cycle regulation, apoptosis, metabolism, and senescence. TP53 genetic variants and the activity of the wild-type p53 protein (WT-p53) have been linked to a wide range of tumorigenesis. Various genetic and epigenetic alterations, including germline and somatic mutations, loss of heterozygosity, and DNA methylation, can alter TP53 activity, potentially resulting in cancer initiation and progression. This study was designed to screen three reported mutations in the DNA-binding domain of the p53 protein in breast cancer, to evaluate the relative susceptibility and risk associated with breast cancer in the local population. Genomic DNA was isolated from 30 breast tumor tissues along with controls. Tetra and Tri ARMS PCR were performed to detect mutations in the TP53 coding region. For SNPs c.637C>T and c.733C>T, all analyzed cases were homozygous for the wild-type allele ‘C,’ while for SNP c.745A>G, all cases were homozygous for the wild-type allele ‘A.’ These results indicate no relevance of these three SNPs to cancer progression in our study cohort. Additionally, the findings from whole exon sequencing will help to predict more precise outcomes and assess the importance of TP53 gene mutations in breast cancer patients.
基金supported by the National Natural Science Foundation of China(No.82130075 to Min Lu,No.82073292 to Min Lu,No.81772797 to Xiaosong Chen,No.82072937 to Xiaosong Chen,No.82072897 to Kunwei Shen,No.82002773 to Zheng Wang,No.81900157 to Ying Liang)SJTU Transmed Awards Research(to Min Lu),Shanghai Municipal Education Commission-Gaofeng Clinical Medicine(No.828318 to Min Lu and No.20172007 to Xiaosong Chen)+4 种基金Shanghai Excellent Youth Academic Leader(No.20XD1422700 to Min Lu)Program of Shanghai Science and Technology Committee(No.21S11900100 to Min Lu)Dawn Program of Shanghai Education Commission(No.21SG18 to Min Lu)Samuel Waxman Cancer Research Foundation(to Min Lu)Foundation of National Facility for Translational Medicine(Shanghai)(No.NRCTM(SH)-2021-08).
文摘p53 is mutated in half of cancer cases.However,no p53-targeting drugs have been approved.Here,we reposition decitabine for triple-negative breast cancer(TNBC),a subtype with frequent p53 mutations and extremely poor prognosis.In a retrospective study on tissue microarrays with 132 TNBC cases,DNMT1 overexpression was associated with p53 mutations(P=0.037)and poor overall survival(OS)(P=0.010).In a prospective DEciTabinE and Carboplatin in TNBC(DETECT)trial(NCT03295552),decitabine with carboplatin produced an objective response rate(ORR)of 42%in 12 patients with stage IV TNBC.Among the 9 trialed patients with available TP53 sequencing results,the 6 patients with p53 mutations had higher ORR(3/6 vs.0/3)and better OS(16.0 vs.4.0 months)than the patients with wild-type p53.In a mechanistic study,isogenic TNBC cell lines harboring DETECT-derived p53 mutations exhibited higher DNMT1 expression and decitabine sensitivity than the cell line with wild-type p53.In the DETECT trial,decitabine induced strong immune responses featuring the striking upregulation of the innate immune player IRF7 in the p53-mutated TNBC cell line(upregulation by 16-fold)and the most responsive patient with TNBC.Our integrative studies reveal the potential of repurposing decitabine for the treatment of p53-mutated TNBC and suggest IRF7 as a potential biomarker for decitabine-based treatments.