期刊文献+
共找到194篇文章
< 1 2 10 >
每页显示 20 50 100
Assessment and Visualization of Ki67 Heterogeneity in Breast Cancers through Digital Image Analysis
1
作者 Chien-Hui Wu Min-Hsiang Chang +1 位作者 Hsin-Hsiu Tsai Yi-Ting Peng 《Advances in Breast Cancer Research》 CAS 2024年第2期11-26,共16页
The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki... The Ki67 index (KI) is a standard clinical marker for tumor proliferation;however, its application is hindered by intratumoral heterogeneity. In this study, we used digital image analysis to comprehensively analyze Ki67 heterogeneity and distribution patterns in breast carcinoma. Using Smart Pathology software, we digitized and analyzed 42 excised breast carcinoma Ki67 slides. Boxplots, histograms, and heat maps were generated to illustrate the KI distribution. We found that 30% of cases (13/42) exhibited discrepancies between global and hotspot KI when using a 14% KI threshold for classification. Patients with higher global or hotspot KI values displayed greater heterogenicity. Ki67 distribution patterns were categorized as randomly distributed (52%, 22/42), peripheral (43%, 18/42), and centered (5%, 2/42). Our sampling simulator indicated analyzing more than 10 high-power fields was typically required to accurately estimate global KI, with sampling size being correlated with heterogeneity. In conclusion, using digital image analysis in whole-slide images allows for comprehensive Ki67 profile assessment, shedding light on heterogeneity and distribution patterns. This spatial information can facilitate KI surveys of breast cancer and other malignancies. 展开更多
关键词 Ki67 Heterogeneity breast Cancer Digital image analysis
下载PDF
Automation of immunohistochemical evaluation in breast cancer using image analysis 被引量:3
2
作者 Keerthana Prasad Avani Tiwari +2 位作者 Sandhya Ilanthodi Gopalakrishna Prabhu Muktha Pai 《World Journal of Clinical Oncology》 CAS 2011年第4期187-194,共8页
AIM:To automate breast cancer diagnosis and to study the inter-observer and intra-observer variations in the manual evaluations.METHODS:Breast tissue specimens from sixty cases were stained separately for estrogen rec... AIM:To automate breast cancer diagnosis and to study the inter-observer and intra-observer variations in the manual evaluations.METHODS:Breast tissue specimens from sixty cases were stained separately for estrogen receptor(ER),progesterone receptor(PR)and human epidermal growth factor receptor-2(HER-2/neu).All cases were assessed by manual grading as well as image analysis.The manual grading was performed by an experienced expert pathologist.To study inter-observer and intra-observer variations,we obtained readings from another pathologist as the second observer from a different laboratory who has a little less experience than the first observer.We also took a second reading from the second observer to study intra-observer variations.Image analysis was carried out using in-house developed software(TissueQuant).A comparison of the results from image analysis and manual scoring of ER,PR and HER-2/neu was also carried out.RESULTS:The performance of the automated analysis in the case of ER,PR and HER-2/neu expressions was compared with the manual evaluations.The performance of the automated system was found to correlate well with the manual evaluations.The inter-observer variations were measured using Spearman correlation coefficient r and 95%confidence interval.In the case of ER expression,Spearman correlation r=0.53,in the case of PR expression,r=0.63,and in the case of HER-2/neu expression,r=0.68.Similarly,intra-observer variations were also measured.In the case of ER,PR and HER-2/neu expressions,r=0.46,0.66 and 0.70,respectively.CONCLUSION:The automation of breast cancer diagnosis from immunohistochemically stained specimens is very useful for providing objective and repeatable evaluations. 展开更多
关键词 AUTOMATION breast cancer DIAGNOSIS COMPUTER aided DIAGNOSIS image analysis IMMUNOHISTOCHEMICAL study
下载PDF
Value of Magnetic Resonance Imaging Texture Analysis in the Differential Diagnosis of Benign and Malignant Breast Tumors 被引量:15
3
作者 王波涛 樊文萍 +6 位作者 许欢 李丽慧 张晓欢 王昆 刘梦琦 游俊浩 陈志晔 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第1期33-37,共5页
Objective To investigate the difference in texture features on diffusion weighted imaging(DWI) images between breast benign and malignant tumors.Methods Patients including 56 with mass-like breast cancer, 16 with brea... Objective To investigate the difference in texture features on diffusion weighted imaging(DWI) images between breast benign and malignant tumors.Methods Patients including 56 with mass-like breast cancer, 16 with breast fibroadenoma, and 4 with intraductal papilloma of breast treated in the Hainan Hospital of Chinese PLA General Hospital were retrospectively enrolled in this study, and allocated to the benign group(20 patients) and the malignant group(56 patients) according to the post-surgically pathological results. Texture analysis was performed on axial DWI images, and five characteristic parameters including Angular Second Moment(ASM), Contrast, Correlation, Inverse Difference Moment(IDM), and Entropy were calculated. Independent sample t-test and Mann-Whitney U test were performed for intergroup comparison. Regression model was established by using Binary Logistic regression analysis, and receiver operating characteristic curve(ROC) analysis was carried out to evaluate the diagnostic efficiency. Results The texture features ASM, Contrast, Correlation and Entropy showed significant differences between the benign and malignant breast tumor groups(PASM= 0.014, Pcontrast= 0.019, Pcorrelation= 0.010, Pentropy= 0.007). The area under the ROC curve was 0.685, 0.681, 0.754, and 0.683 respectively for the positive texture variables mentioned above, and that for the combined variables(ASM, Contrast, and Entropy) was 0.802 in the model of Logistic regression. Binary Logistic regression analysis demonstrated that ASM, Contrast and Entropy were considered as thespecific imaging variables for the differential diagnosis of breast benign and malignant tumors.Conclusion The texture analysis of DWI may be a simple and effective tool in the differential diagnosis between breast benign and malignant tumors. 展开更多
关键词 breast TUMOR TEXTURE analysis magnetic RESONANCE imaging differential diagnosis
下载PDF
Diagnostic value of preoperative examination for evaluating margin status in breast cancer
4
作者 Peng Liu Ye Zhao +4 位作者 Dong-Dong Rong Kai-Fu Li Ya-Jun Wang Jing Zhao Hua Kang 《World Journal of Clinical Cases》 SCIE 2023年第20期4852-4864,共13页
BACKGROUND A positive resection margin is a major risk factor for local breast cancer recurrence after breast-conserving surgery(BCS).Preoperative imaging examinations are frequently employed to assess the surgical ma... BACKGROUND A positive resection margin is a major risk factor for local breast cancer recurrence after breast-conserving surgery(BCS).Preoperative imaging examinations are frequently employed to assess the surgical margin.AIM To investigate the role and value of preoperative imaging examinations[magnetic resonance imaging(MRI),molybdenum target,and ultrasound]in evaluating margins for BCS.METHODS A retrospective study was conducted on 323 breast cancer patients who met the criteria for BCS and consented to the procedure from January 2014 to July 2021.The study gathered preoperative imaging data(MRI,ultrasound,and molybdenum target examination)and intraoperative and postoperative pathological information.Based on their BCS outcomes,patients were categorized into positive and negative margin groups.Subsequently,the patients were randomly split into a training set(226 patients,approximately 70%)and a validation set(97 patients,approximately 30%).The imaging and pathological information was analyzed and summarized using R software.Non-conditional logistic regression and LASSO regression were conducted in the validation set to identify factors that might influence the failure of BCS.A column chart was generated and applied to the validation set to examine the relationship between pathological margin range and prognosis.This study aims to identify the risk factors associated with failure in BCS.RESULTS The multivariate non-conditional logistic regression analysis demonstrated that various factors raise the risk of positive margins following BCS.These factors comprise non-mass enhancement(NME)on dynamic contrastenhanced MRI,multiple focal vascular signs around the lesion on MRI,tumor size exceeding 2 cm,type III timesignal intensity curve,indistinct margins on molybdenum target examination,unclear margins on ultrasound examination,and estrogen receptor(ER)positivity in immunohistochemistry.LASSO regression was additionally employed in this study to identify four predictive factors for the model:ER,molybdenum target tumor type(MT Xmd Shape),maximum intensity projection imaging feature,and lesion type on MRI.The model constructed with these predictive factors exhibited strong consistency with the real-world scenario in both the training set and validation set.Particularly,the outcomes of the column chart model accurately predicted the likelihood of positive margins in BCS.CONCLUSION The proposed column chart model effectively predicts the success of BCS for breast cancer.The model utilizes preoperative ultrasound,molybdenum target,MRI,and core needle biopsy pathology evaluation results,all of which align with the real-world scenario.Hence,our model can offer dependable guidance for clinical decisionmaking concerning BCS. 展开更多
关键词 breast cancer breast-conserving surgery Imaging features Positive surgical margin Regression analysis model
下载PDF
基于CiteSpace的乳腺癌患者身体意象研究的可视化分析
5
作者 黄国虹 吴蓉蓉 +4 位作者 宋永霞 陈曦 郑瑢 徐秀芝 洪静芳 《中国医药导报》 CAS 2024年第6期1-7,共7页
目的 利用Cite Space软件对乳腺癌患者身体意象研究领域进行可视化分析。方法 检索Web of Science核心合集数据库、中国知网、维普网、万方知识服务平台及中国生物医学文献数据库收录的相关文献,检索时间为2004年1月至2023年6月,使用Cit... 目的 利用Cite Space软件对乳腺癌患者身体意象研究领域进行可视化分析。方法 检索Web of Science核心合集数据库、中国知网、维普网、万方知识服务平台及中国生物医学文献数据库收录的相关文献,检索时间为2004年1月至2023年6月,使用CiteSpace 6.1.R6软件进行发文量、作者、机构及关键词分析。结果 纳入中文文献117篇,英文文献673篇,发文量整体呈上升趋势。中文文献发文量排名前三位的是王晴、贾辛婕和张志娟;英文文献发文量排名前三位的是Sherman、Aaronson、Partridge。中文文献发文量前三位的机构为天津医科大学附属肿瘤医院、安徽医科大学、首都医科大学;英文文献发文量前三位的机构为澳大利亚的悉尼大学、美国的德克萨斯大学安德森癌症中心、加拿大的多伦多大学。剔除文献检索词,中文文献前三位高频关键词为护理、应对方式、社会支持;英文文献前三位高频关键词为quality of life、women、surgery。中英文文献共形成15个聚类,主要聚焦于3个方面:乳腺癌患者身体意象的现状调查及关联性因素分析,评估工具的验证完善,干预方案的应用。近年来突现的中文高频关键词为应对方式和病耻感,英文高频关键词为validation。结论 乳腺癌患者身体意象问题已逐渐被学者们关注,未来机构间应加强合作,研制更多本土化的评估工具,探索干预新模式,以期改善乳腺癌患者身体意象。 展开更多
关键词 身体意象 乳腺癌 CITESPACE 可视化分析
下载PDF
基于DCE-MRI表现的logistic回归分析模型在乳腺良恶性病变诊断中的应用
6
作者 刘刚虎 汪飞 +1 位作者 程兰兰 胡汉金 《中国CT和MRI杂志》 2024年第3期97-99,共3页
目的 分析基于动态对比增强磁共振成像(DCE-M RI)表现的logistic回归分析模型在乳腺良恶性病变诊断中的应用。方法 回顾性分析2021年1月~2023年10月来我院进行乳腺检查患者161例临床资料。其中良性病变60例、恶性病变101例,分别纳入良性... 目的 分析基于动态对比增强磁共振成像(DCE-M RI)表现的logistic回归分析模型在乳腺良恶性病变诊断中的应用。方法 回顾性分析2021年1月~2023年10月来我院进行乳腺检查患者161例临床资料。其中良性病变60例、恶性病变101例,分别纳入良性组(n=60)及恶性组(n=101)。分析两组DCE-MRI表现差异,进行单因素分析,利用二元Logistic回归分析构建乳腺良恶性病变诊断模型。采用受试者工作特征(ROC)曲线分析乳腺良恶性病变诊断模型的效能。结果 单因素分析显示,良性组与恶性组TIC曲线、BI-RADS分级、早期强化率、边缘形态及病灶大小比较差异有统计学意义(P<0.05);二元Logistic回归分析结果显示, TIC曲线、BI-RADS分级、早期强化率、边缘形态及病灶大小是乳腺良恶性病变危险征像;构建logistic乳腺癌良恶性病变诊断模型Y=-0.633+0.645TIC曲线+2.112×BI-RADS分级+1.142×早期强化率+1.136×边缘形态+1.136×病灶大小;ROC曲线分析显示该模型诊断效能,AUC为0.944,敏感度为83.33%,特异度为85.15%,提示该模型具有较高的诊断效能。结论 基于乳腺病变早期DCE-MRI表现的logistic诊断模型,能够筛选出对乳腺恶性病变鉴别诊断有意义的特征变量,对乳腺良恶性病变具有较高的诊断效能。 展开更多
关键词 乳腺良恶性病变 动态对比增强磁共振成像 logistic回归分析模型
下载PDF
基于全病变MRI动态增强扫描直方图分析对小乳腺癌腋窝淋巴结转移的预测价值
7
作者 马芹芹 卢星如 +3 位作者 李芷凡 刘春翠 冯雯 雷军强 《中国中西医结合影像学杂志》 2024年第4期424-429,共6页
目的:基于小乳腺癌全病变MRI动态增强扫描(DCE-MRI)直方图分析及临床特征预测腋窝淋巴结(ALN)转移。方法:回顾性分析93例小乳腺癌患者临床病理资料,其中30例发生ALN转移(转移组),63例ALN无转移(无转移组)。患者术前或治疗前均行MRI检查... 目的:基于小乳腺癌全病变MRI动态增强扫描(DCE-MRI)直方图分析及临床特征预测腋窝淋巴结(ALN)转移。方法:回顾性分析93例小乳腺癌患者临床病理资料,其中30例发生ALN转移(转移组),63例ALN无转移(无转移组)。患者术前或治疗前均行MRI检查。采用FireVoxel软件勾画ROI并行直方图分析,采用t检验及Mann-WhitneyU检验分析比较2组的直方图参数。采用Pearson及Spearman相关检验分析ALN转移与直方图参数之间的相关性,采用二元logistic回归分析对筛选出ALN转移组和无转移组间差异有统计学意义的参数构建联合模型,并利用ROC曲线分析直方图参数对ALN状态的诊断效能。结果:年龄和绝经状态均与ALN转移存在相关性(均P<0.05)。直方图参数中最小值、第5百分位数、变异系数、体积均与ALN转移显著相关(均P<0.05)。在直方图参数中,体积预测ALN状态的AUC最大,为0.729,最佳阈值为1.765。最小值、第5百分位数、变异系数、体积和年龄构建的联合模型的AUC最高,为0.780。结论:基于全病变DCE-MRI直方图分析可用于预测小乳腺癌的ALN转移,且最小值、第5百分位数、变异系数和体积是预测ALN状态有价值的影像学指标。 展开更多
关键词 小乳腺癌 磁共振成像 动态增强扫描 直方图分析 腋窝淋巴结转移
下载PDF
超声“萤火虫”成像对乳腺癌诊断价值的Meta分析
8
作者 吴凤 李阳 +1 位作者 王兵 靳鹏 《医学影像学杂志》 2024年第3期49-52,共4页
目的用Meta分析评价超声“萤火虫”成像对乳腺癌的诊断价值。方法检索PubMed、Cochrane、知网、万方等数据库中的相关文献并根据纳入标准严格进行文献筛选及质量评价。采用Meta-Desc及Stata 16.0统计软件,检验异质情况并选择相应效应模... 目的用Meta分析评价超声“萤火虫”成像对乳腺癌的诊断价值。方法检索PubMed、Cochrane、知网、万方等数据库中的相关文献并根据纳入标准严格进行文献筛选及质量评价。采用Meta-Desc及Stata 16.0统计软件,检验异质情况并选择相应效应模型,获得敏感度、特异度及似然比的均值及95%可信区间,绘制SROC曲线并计算曲线下面积,最后进行偏倚分析。结果共纳入18篇文献,共1647个病例,1807个病灶。由于存在非阈值效应引起的异质性,固采用随机效应模型合并效应量,合并敏感度、特异度及SROC曲线下面积分别为83.00%(78.00%~87.00%),86.00%(81.00%~90.00%),0.91(0.88~0.93);合并诊断比值比(DOR)为29.00(17.00~51.00)。纳入文献较稳定,无明显发表偏倚(P=0.48>0.05)。结论Meta分析表明,超声“萤火虫”成像诊断乳腺癌的敏感度、特异度及准确率均较高,具有较高的临床应用价值。 展开更多
关键词 乳腺肿瘤 超声检查 “萤火虫”成像 META分析
下载PDF
超微血管成像技术诊断乳腺肿瘤的meta分析
9
作者 陈思晗 熊虎 +2 位作者 税典雅 高小瞻 刘泽伟 《临床荟萃》 CAS 2024年第2期108-114,共7页
目的采用meta分析方法评价超微血管成像技术(SMI)评估乳腺肿瘤良恶性的临床价值。方法系统搜索PubMed、Cochrane Library、Embase、CNKI、CBM、WANFANG、VIP中建库至2022年9月20日有关超微血流成像(super microvascular imaging,SMI)评... 目的采用meta分析方法评价超微血管成像技术(SMI)评估乳腺肿瘤良恶性的临床价值。方法系统搜索PubMed、Cochrane Library、Embase、CNKI、CBM、WANFANG、VIP中建库至2022年9月20日有关超微血流成像(super microvascular imaging,SMI)评估乳腺肿瘤良恶性的文献。由2名研究人员依据纳入及排除标准初筛文献并提取信息;运用QUADAS-2工具评估纳入原始文献质量,Review Manager 5.3绘制文献质量评估图,Stata 17.0计算SMI评估乳腺肿瘤的敏感度(SEN)、特异度(SPE)、阳性似然比(PLR)、阴性似然比(NLR)及诊断比值比(DOR),绘制综合受试者工作特征曲线(SROC),获得曲线下面积;绘制漏斗图进行发表偏倚评估。结果最终纳入15篇文献、1769例乳腺肿瘤患者、共1912个病灶,其中恶性结节916个、良性结节991个。Meta分析结果显示,SMI评估乳腺病变SEN、SPE、PLR、NLR、DOR及SROC曲线下面积分别为0.82[95%CI(0.79~0.84)]、0.87[95%CI(0.85~0.89)]、6.58[95%CI(4.58~9.43)]、0.19[95%CI(0.16~0.24)]、39.47[95%CI(27.18~57.31)]、0.93[95%CI(0.90~0.95)]。结论SMI评估乳腺良恶性病变的鉴别具有较高的诊断准确性。 展开更多
关键词 超微血流成像 乳腺肿瘤 荟萃分析
下载PDF
人工智能辅助的磁共振成像在评估乳腺癌新辅助化疗中的应用综述
10
作者 刘凯文 金莹莹 王守巨 《数据采集与处理》 CSCD 北大核心 2024年第4期794-812,共19页
新辅助化疗已成为乳腺癌标准治疗策略,而磁共振成像是评估乳腺癌对新辅助化疗反应的首选影像学方法。虽然磁共振成像能提供关于肿瘤位置、大小及微环境等详细信息,但肿瘤的多样性变化给乳腺癌新辅助化疗的精准评估带来挑战。基于机器学... 新辅助化疗已成为乳腺癌标准治疗策略,而磁共振成像是评估乳腺癌对新辅助化疗反应的首选影像学方法。虽然磁共振成像能提供关于肿瘤位置、大小及微环境等详细信息,但肿瘤的多样性变化给乳腺癌新辅助化疗的精准评估带来挑战。基于机器学习和深度学习的人工智能方法展现出识别磁共振成像数据中复杂模式的能力。通过临床影像特征分析、影像组学分析和生境分析等方法,人工智能技术已显著提升乳腺癌新辅助化疗评估的性能和效率,有助于实现个性化治疗策略。本文介绍了乳腺癌新辅助化疗评估所用的磁共振成像数据及性能指标,总结了人工智能技术在此领域的应用进展,同时探讨了当前人工智能技术在实际应用中的挑战和未来可能的研究方向。 展开更多
关键词 乳腺癌 新辅助化疗 磁共振成像 人工智能 影像组学 生境分析
下载PDF
基于彩色多普勒超声的影像组学模型鉴定乳腺肿瘤良恶性的价值
11
作者 乐翠容 廖怀梁 严志 《实用医技杂志》 2024年第4期232-236,I0001,共6页
目的了解基于彩色多普勒超声的影像组学模型鉴定乳腺肿瘤良恶性的价值。方法收集2022年7月至2023年12月于本院超声科常规乳腺超声检查出有乳腺肿瘤的60例患者资料,分为训练集(30例)与测试集(30例)。采用医学图像2D/3D可视化ITK-SANP软... 目的了解基于彩色多普勒超声的影像组学模型鉴定乳腺肿瘤良恶性的价值。方法收集2022年7月至2023年12月于本院超声科常规乳腺超声检查出有乳腺肿瘤的60例患者资料,分为训练集(30例)与测试集(30例)。采用医学图像2D/3D可视化ITK-SANP软件在超声灰阶图像上沿着乳腺肿块轮廓绘制感兴趣区域(ROI),将其导入A.K.软件提取影像组学特征。采用使用最小绝对值收敛和选择算子(LASSO)算法进行多变量回归建立预测模型,绘制受试者工作特征曲线(ROC)并计算曲线下面积(AUC)、准确度(ACC)、灵敏度(SEN)和特异度(SPE)。结果经过单因素与多因素logistic回归分析发现形态、边缘以及微钙化为预测乳腺肿瘤良恶性的独立因素,并且基于LASSO分析算法发现在训练集和验证集中,AUC分别为0.871和0.849。训练集中的ACC为0.728,SEN为0.961,SPE为0.637;验证集中的ACC为0.753,SEN为0.974,SPE为0.607。结论基于彩色多普勒超声的影像组学建立的LASSO模型在鉴定乳腺肿块良恶性的临床实践中具有潜在的应用前景。 展开更多
关键词 超声检查 多普勒 彩色 影像基因组学 乳腺肿瘤 回归分析
下载PDF
基于人工智能技术的动态增强磁共振成像直方图分析在乳腺癌术前分级诊断中的价值
12
作者 王一平 张剑茹 +1 位作者 穆坤 张晔 《中国医学装备》 2024年第4期66-70,共5页
目的:探讨基于人工智能技术的动态增强磁共振成像(DCE-MRI)直方图分析在乳腺癌术前分级诊断中的价值。方法:连续纳入2020年9月至2022年9月河北生殖妇产医院收治的80例乳腺癌患者,分别进行分子分型[Luminal A型22例,Luminal B型44例,三阴... 目的:探讨基于人工智能技术的动态增强磁共振成像(DCE-MRI)直方图分析在乳腺癌术前分级诊断中的价值。方法:连续纳入2020年9月至2022年9月河北生殖妇产医院收治的80例乳腺癌患者,分别进行分子分型[Luminal A型22例,Luminal B型44例,三阴型10例,人表皮生长因子受体2(HER-2)过表达型4例]和组织学分级(1级21例,2级20例,3级39例)。收集所有患者DCE-MRI检查资料,将图像传至图像后台工作站进行图像后处理,获取速率常数(K_(ep))、容积转移常数(K^(trans))以及血管外细胞外间隙容积比(V_(e))的平均值、10%位数、25%位数、75%位数和90%位数,并进行人工智能分析。结果:分子分型中非Luminal B型乳腺癌患者K_(ep)值的平均值、10%位数、25%位数、75%位数和90%位数高于Luminal B型乳腺癌患者,差异有统计学意义(t=23.203、14.305、10.706、10.257、19.754,P<0.05),K^(trans)值的平均值、10%位数、25%位数、75%位数和90%位数高于Luminal B型乳腺癌患者,差异有统计学意义(t=8.946、6.803、15.113、6.309、8.284,P<0.05),V_(e)值的平均值、10%位数、25%位数、75%位数和90%位数低于Luminal B型乳腺癌患者,差异有统计学意义(t=8.850、8.686、5.831、9.580、6.753,P<0.05)。组织学分级中3级乳腺癌患者K_(ep)值的平均值、10%位数、25%位数、75%位数和90%位数高于1~2级乳腺癌患者,差异有统计学意义(t=3.478、2.487、2.858、2.308、2.048,P<0.05),K^(trans)值的平均值、10%位数、25%位数、75%位数和90%位数高于1~2级乳腺癌患者,差异有统计学意义(t=2.103、2.075、2.063、2.116、2.042,P<0.05),V_(e)值的平均值、10%位数、25%位数、75%位数和90%位数低于1~2级乳腺癌患者,差异有统计学意义(t=8.925、2.368、6.545、3.370、2.008,P<0.05)。K_(ep)值的平均值和10%位数、K^(trans)值的平均值和10%位数与乳腺癌组织学分级呈显著正相关(r=0.541、0.425、0.481、0.469,P<0.05),V_(e)值的平均值与乳腺癌组织学分级呈显著负相关(r=-0.567,P<0.05)。结论:基于人工智能技术的DCE-MRI直方图分析可消除主观性和人为误差影响,提高乳腺癌术前分级诊断的客观性和一致性,帮助临床医生制定个性化治疗方案,具有临床推广价值。 展开更多
关键词 乳腺癌 动态增强磁共振成像(DCE-MRI) 人工智能(AI) 深度学习 卷积神经网络 直方图分析
下载PDF
Predictive model for contrast-enhanced ultrasound of the breast: Is it feasible in malignant risk assessment of breast imaging reporting and data system 4 lesions? 被引量:10
13
作者 Jun Luo Ji-Dong Chen +6 位作者 Qing Chen Lin-Xian Yue Guo Zhou Cheng Lan Yi Li Chi-Hua Wu Jing-Qiao Lu 《World Journal of Radiology》 CAS 2016年第6期600-609,共10页
AIM: To build and evaluate predictive models for contrast-enhanced ultrasound(CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system(B... AIM: To build and evaluate predictive models for contrast-enhanced ultrasound(CEUS) of the breast to distinguish between benign and malignant lesions. METHODS: A total of 235 breast imaging reporting and data system(BI-RADS) 4 solid breast lesions were imaged via CEUS before core needle biopsy or surgical resection. CEUS results were analyzed on 10 enhancing patterns to evaluate diagnostic performance of three benign and three malignant CEUS models, with pathological results used as the gold standard. A logistic regression model was developed basing on the CEUS results, and then evaluated with receiver operating curve(ROC). RESULTS: Except in cases of enhanced homogeneity, the rest of the 9 enhancement appearances were statistically significant(P < 0.05). These 9 enhancement patterns were selected in the final step of the logistic regression analysis, with diagnostic sensitivity and specificity of 84.4% and 82.7%, respectively, and the area under the ROC curve of 0.911. Diagnostic sensitivity, specificity, and accuracy of the malignant vs benign CEUS models were 84.38%, 87.77%, 86.38% and 86.46%, 81.29% and 83.40%, respectively. CONCLUSION: The breast CEUS models can predict risk of malignant breast lesions more accurately, decrease false-positive biopsy, and provide accurate BIRADS classification. 展开更多
关键词 breast CONTRAST-ENHANCED ultrasound Qualitative analysis breast imaging REPORTING and data system PREDICTIVE model
下载PDF
Simply Fine-Tuned Deep Learning-Based Classification for Breast Cancer with Mammograms
14
作者 Vicky Mudeng Jin-woo Jeong Se-woon Choe 《Computers, Materials & Continua》 SCIE EI 2022年第12期4677-4693,共17页
A lump growing in the breast may be referred to as a breast mass related to the tumor.However,not all tumors are cancerous or malignant.Breast masses can cause discomfort and pain,depending on the size and texture of ... A lump growing in the breast may be referred to as a breast mass related to the tumor.However,not all tumors are cancerous or malignant.Breast masses can cause discomfort and pain,depending on the size and texture of the breast.With an appropriate diagnosis,non-cancerous breast masses can be diagnosed earlier to prevent their cultivation from being malignant.With the development of the artificial neural network,the deep discriminative model,such as a convolutional neural network,may evaluate the breast lesion to distinguish benign and malignant cancers frommammogram breast masses images.This work accomplished breastmasses classification relative to benign and malignant cancers using a digital database for screening mammography image datasets.A residual neural network 50(ResNet50)model along with an adaptive gradient algorithm,adaptive moment estimation,and stochastic gradient descent optimizers,as well as data augmentations and fine-tuning methods,were implemented.In addition,a learning rate scheduler and 5-fold cross-validation were applied with 60 training procedures to determine the best models.The results of training accuracy,p-value,test accuracy,area under the curve,sensitivity,precision,F1-score,specificity,and kappa for adaptive gradient algorithm 25%,75%,100%,and stochastic gradient descent 100%fine-tunings indicate that the classifier is feasible for categorizing breast cancer into benign and malignant from the mammographic breast masses images. 展开更多
关键词 Medical image analysis convolutional neural network MAMMOGRAM breast masses breast cancer
下载PDF
Thermogram Adaptive Efficient Model for Breast Cancer Detection Using Fractional Derivative Mask and Hybrid Feature Set in the IoT Environment
15
作者 Ritam Sharma JankiBallabh Sharma +1 位作者 Ranjan Maheshwari Praveen Agarwal 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第2期923-947,共25页
In this paper,a novel hybrid texture feature set and fractional derivative filter-based breast cancer detection model is introduced.This paper also introduces the application of a histogram of linear bipolar pattern f... In this paper,a novel hybrid texture feature set and fractional derivative filter-based breast cancer detection model is introduced.This paper also introduces the application of a histogram of linear bipolar pattern features(HLBP)for breast thermogram classification.Initially,breast tissues are separated by masking operation and filtered by Gr¨umwald–Letnikov fractional derivative-based Sobel mask to enhance the texture and rectify the noise.A novel hybrid feature set usingHLBP and other statistical feature sets is derived and reduced by principal component analysis.Radial basis function kernel-based support vector machine is employed for detecting the abnormality in the thermogram.The performance parameters are calculated using five-fold cross-validation scheme using MATLAB 2015a simulation software.The proposedmodel achieves the classification accuracy,sensitivity,specificity,and area under the curve of 94.44%,95.55%,92.22%,96.11%,respectively.A comparative investigation of different texture features with respect to fractional orderαto classify the breast malignancy is also presented.The proposed model is also compared with a few existing state-of-art schemes which verifies the efficacy of the model.Fractional orderαoffers extra adaptability in overcoming the limitations of thermal imaging techniques and assists radiologists in prior breast cancer detection.The proposed model is more generalized which can be used with different thermal image acquisition protocols and IoT based applications. 展开更多
关键词 Thermal image breast cancer fractional derivative mask image texture analysis feature extraction radial basis function machine learning
下载PDF
Optimal Deep Transfer Learning Model for Histopathological Breast Cancer Classification
16
作者 Mahmoud Ragab Alaa F.Nahhas 《Computers, Materials & Continua》 SCIE EI 2022年第11期2849-2864,共16页
Earlier recognition of breast cancer is crucial to decrease the severity and optimize the survival rate.One of the commonly utilized imaging modalities for breast cancer is histopathological images.Since manual inspec... Earlier recognition of breast cancer is crucial to decrease the severity and optimize the survival rate.One of the commonly utilized imaging modalities for breast cancer is histopathological images.Since manual inspection of histopathological images is a challenging task,automated tools using deep learning(DL)and artificial intelligence(AI)approaches need to be designed.The latest advances of DL models help in accomplishing maximum image classification performance in several application areas.In this view,this study develops a Deep Transfer Learning with Rider Optimization Algorithm for Histopathological Classification of Breast Cancer(DTLRO-HCBC)technique.The proposed DTLRO-HCBC technique aims to categorize the existence of breast cancer using histopathological images.To accomplish this,the DTLRO-HCBC technique undergoes pre-processing and data augmentation to increase quantitative analysis.Then,optimal SqueezeNet model is employed for feature extractor and the hyperparameter tuning process is carried out using the Adadelta optimizer.Finally,rider optimization with deep feed forward neural network(RO-DFFNN)technique was utilized employed for breast cancer classification.The RO algorithm is applied for optimally adjusting the weight and bias values of the DFFNN technique.For demonstrating the greater performance of the DTLRO-HCBC approach,a sequence of simulations were carried out and the outcomes reported its promising performance over the current state of art approaches. 展开更多
关键词 breast cancer histopathological images machine learning biomedical analysis deep learning computer vision
下载PDF
A Finite Element Model for Recognizing Breast Cancer
17
作者 Ashraf Ali Wahba Nagat Mansour Mohammed Khalifa +1 位作者 Ahmed Farag Seddik Mohammed Ibrahim El-Adawy 《Journal of Biomedical Science and Engineering》 2014年第5期296-306,共11页
Breast cancer recognition is an important issue in elastography diagnostic imaging. Breast tumor biopsy has been for many years the reference procedure to assess histological definition for breast diseases. But biopsy... Breast cancer recognition is an important issue in elastography diagnostic imaging. Breast tumor biopsy has been for many years the reference procedure to assess histological definition for breast diseases. But biopsy measurement is an invasive method besides it takes larger time. So, fast and improved methods are needed. Using elastography technology, a digital image correlation technique can be used to calculate the displacement of breast tissue after it has suffered a compression force. This displacement is related to tissue stiffness, and breast cancer can be classified into benign or malignant according to that displacement. The value of compression force affects the displacement of tissue, and then affects the results of the breast cancer recognition. Finite element method was being used to simulate a model for the breast cancer as a phantom to be used in measurements and study of breast cancer diagnosis. The breast cancer using this phantom can be recognized within a short time. The proposed work succeeded in recognizing breast tumor phantom by an average correct recognition ratio CRR of about 94.25% on a simulation environment. The strain ratio SR for benign and malignant models is also computed. The result of the simulated breast tumor model is compared with real data of 10 lesion cases (6 benign and 4 malignant). The coefficient of variation CV between the simulated SR and the SR using real data reaches to about 5% for benign lesions and 4.78% for malignant lesions. The results of CRR and CV in this proposed work assure that the proposed breast cancer model using finite element modeling is a robust technique for breast tumor simulation where the behavior of real data of breast cancer can be predicted. 展开更多
关键词 breast CANCER Digital image Correlation ULTRASOUND ELASTOGRAPHY STRAIN analysis breast CANCER Diagnosis
下载PDF
乳腺癌化疗患者核素门控心肌灌注纹理特征及其对心肌损害的早期预测价值 被引量:2
18
作者 巴雅 刘立水 +3 位作者 祖拉亚提·库尔班 谢彬 娜姿·伊力哈木 姚娟 《疑难病杂志》 CAS 2023年第10期1032-1038,共7页
目的分析乳腺癌化疗患者核素门控心肌灌注纹理特征及其在早期预警蒽环类药物化疗后心肌损害的价值。方法纳入2021年1月—2022年2月新疆医科大学第一附属医院核医学科接受蒽环类药物规律化疗的乳腺癌患者122例,于化疗1疗程结束后采用SPEC... 目的分析乳腺癌化疗患者核素门控心肌灌注纹理特征及其在早期预警蒽环类药物化疗后心肌损害的价值。方法纳入2021年1月—2022年2月新疆医科大学第一附属医院核医学科接受蒽环类药物规律化疗的乳腺癌患者122例,于化疗1疗程结束后采用SPECT和超声心动图检测患者心功能和心肌细胞活力状态,通过纹理分析提取心肌的40个纹理特征;随访1年,根据心脏毒性评价指标评估患者化疗后心肌损害情况,据此分为心肌损害组和无心肌损害组。比较2组患者临床资料,采用Logistic回归分析乳腺癌化疗后心肌损害的独立影响因素;使用R语言软件绘制列线图模型,绘制校正曲线、ROC曲线评估模型在早期预测乳腺癌化疗后心肌损害的内部效能。结果随访1年,失访7例,剩余115例患者中出现35例不同程度的心脏毒性(心肌损害组),余80例为无心肌损害组。心肌损害组化疗1疗程后SPECT指标中的相位标准差(SD)、相位直方图带宽(BW)高于无心肌损害组(t/P=2.418/0.017、2.304/0.023);纹理分析中心肌损害组Energy、Total energy、Contrast值高于无心肌损害组(t=8.003、6.178、4.911,P均<0.001);多因素Logistic回归分析显示,SD、BW、Energy、Contrast升高为乳腺癌化疗后心肌损害的危险因素[OR(95%CI)=1.480(1.027~2.134)、1.615(1.191~2.191)、5.953(2.247~15.766)、1.041(1.018~1.065)];以独立相关因素构建乳腺癌化疗后心肌损害的早期预测列线图模型得出C-指数为0.915(95%CI 0.889~0.984),校正曲线与理想曲线走形接近;列线图模型的ROC曲线分析显示,早期评估乳腺癌化疗后心肌损害的AUC为0.924,敏感度为0.886、特异度为0.838。结论早期核素门控成像心肌灌注的纹理特征能够预测乳腺癌蒽环类药物化疗后心肌损害,对于指导临床早期进行心肌保护,调整治疗方案具有重要意义。 展开更多
关键词 乳腺癌 心肌损害 蒽环类药物 核素门控成像 纹理分析
下载PDF
Breast dynamic contrast-enhanced-magnetic resonance imaging and radiomics:State of art
19
作者 Alessia Orlando Mariangela Dimarco +1 位作者 Roberto Cannella Tommaso Vincenzo Bartolotta 《Artificial Intelligence in Medical Imaging》 2020年第1期6-18,共13页
Breast cancer represents the most common malignancy in women,being one of the most frequent cause of cancer-related mortality.Ultrasound,mammography,and magnetic resonance imaging(MRI)play a pivotal role in the diagno... Breast cancer represents the most common malignancy in women,being one of the most frequent cause of cancer-related mortality.Ultrasound,mammography,and magnetic resonance imaging(MRI)play a pivotal role in the diagnosis of breast lesions,with different levels of accuracy.Particularly,dynamic contrastenhanced MRI has shown high diagnostic value in detecting multifocal,multicentric,or contralateral breast cancers.Radiomics is emerging as a promising tool for quantitative tumor evaluation,allowing the extraction of additional quantitative data from radiological imaging acquired with different modalities.Radiomics analysis may provide novel information through the quantification of lesions heterogeneity,that may be relevant in clinical practice for the characterization of breast lesions,prediction of tumor response to systemic therapies and evaluation of prognosis in patients with breast cancers.Several published studies have explored the value of radiomics with good-to-excellent diagnostic and prognostic performances for the evaluation of breast lesions.Particularly,the integrations of radiomics data with other clinical and histopathological parameters have demonstrated to improve the prediction of tumor aggressiveness with high accuracy and provided precise models that will help to guide clinical decisions and patients management.The purpose of this article in to describe the current application of radiomics in breast dynamic contrast-enhanced MRI. 展开更多
关键词 Radiomics Texture analysis Magnetic resonance imaging Dynamic contrastenhanced-magnetic resonance imaging breast CANCER
下载PDF
THE QUANTITATIVE MEASUREMENT OF BCL-2, P53 PROTEIN AND PCNA EXPRESSION IN BREAST CARCINOMA AND THEIR CORRELATION WITH PROGNOSIS
20
作者 张学斌 王鸿雁 《Journal of Pharmaceutical Analysis》 CAS 1998年第2期120-124,132,共6页
To study quantitative index of bci-2, P53, Nroliferating cell nuclear antigen (PCNA),ER and PR in breast carcinoma and their correiation and their relatiousbip with prognosis, the ex expression of bcl-2, P53 and PCNA ... To study quantitative index of bci-2, P53, Nroliferating cell nuclear antigen (PCNA),ER and PR in breast carcinoma and their correiation and their relatiousbip with prognosis, the ex expression of bcl-2, P53 and PCNA were studied by immunohistochemical technique. The measurementof ER and PR used enzyme linked affinuity histochemical methods. The quantitative index was analyzed by image technique. All analyses were hased on 60 breast carcinomas. The results were as follows:the more bcl-2 protein, the lower histological graded the longer survival term and the highersurvival rate (P< 0. 05). The quautitative measurement of bcl-2, P53 and PCNA expression were ofvalue in evaluating the degree of differentiation and prognosis in breast carcinoma. The quantitativeand qualitative measurement or p53 protein expression showed a Ⅰwerful evidence in evaluatingprognosis of bcl-2 were more significant in evaluating poor prognosis of breast carcinoma. A relationship between bcl-2 and ER, PR showed a better value for response to endocrine therapy in breastcarcinoma patients. 展开更多
关键词 breast carcinoma P53 protein bcl-2 protein PCNA image analysis technique
全文增补中
上一页 1 2 10 下一页 到第
使用帮助 返回顶部