期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进YOLOv5s的电力作业人员安全帽检测算法研究
1
作者 刘昶成 邵文权 李玲陶 《国外电子测量技术》 2024年第2期34-42,共9页
传统的电力施工现场安全帽检测算法的网络计算复杂度高、在复杂场景下对于远处目标和密集群体存在漏检等问题,提出一种改进后的轻量化YOLOv5s-GCAE算法,主干网络首先用GhostNet网络中的深度可分离卷积GhostConv,以此降低网络的计算量和... 传统的电力施工现场安全帽检测算法的网络计算复杂度高、在复杂场景下对于远处目标和密集群体存在漏检等问题,提出一种改进后的轻量化YOLOv5s-GCAE算法,主干网络首先用GhostNet网络中的深度可分离卷积GhostConv,以此降低网络的计算量和参数量。其次在特征提取阶段中嵌入CA注意力机制,填补了引入轻量化网络时精度的缺失。引入自适应空间特征融合(ASFF)网络以有效融合多尺度特征,提高模型丰富的语义特征表示使网络更好的适应复杂的电力施工现场。最后引入损失函数EIOU,促使网络专注于高质量的锚点以提升在复杂场景下安全帽检测精度。构建了一个包含开源图片和自行收集的图片共9326张的安全帽佩戴检测数据集。实验结果表明,该算法的安全帽检测准确率为93.4%,比YOLOv5s算法高2.1%,符合电力场景下安全帽检测的精度要求。 展开更多
关键词 安全帽检测 电力场景 YOLOv5s CA注意力模块 ghost Net
下载PDF
面向石墨电极标签识别的轻量化网络LGSNet
2
作者 梁倩 刘名果 +3 位作者 王亮 陈立家 赵翔宇 白埔州 《电脑与信息技术》 2024年第1期86-89,共4页
轻量化网络已成为面向工业场景部署的关键技术。为进一步提升Ghost module的特征提取能力并减少参数量,提出了一种改进的S-Ghost瓶颈模块(Small Ghost Bottleneck)。此瓶颈模块采用1×1卷积通道与Ghost module并联的结构,缩减Ghost ... 轻量化网络已成为面向工业场景部署的关键技术。为进一步提升Ghost module的特征提取能力并减少参数量,提出了一种改进的S-Ghost瓶颈模块(Small Ghost Bottleneck)。此瓶颈模块采用1×1卷积通道与Ghost module并联的结构,缩减Ghost module的通道数以压缩参数量,并用与之并联的1×1卷积进行通道扩充;在模块输出端引入通道混洗(Channel Shuffle)操作以保证通道间信息交互。实验结果表明,利用该瓶颈结构设计的图像分类网络LGSNet (Light Ghost Networks,LGSNet),其计算量和参数量显著降低,同时网络精度与推理速度未受影响,甚至在一些测试中取得最优,此网络设计满足工业需求。这为面向工业场景的轻量化网络架构设计提供了新的解决方案和思路。 展开更多
关键词 石墨电极 轻量化网络 ghost module s-ghost LGsNet
下载PDF
基于改进YOLOv8s的多尺度检测算法
3
作者 文思予 张上 +1 位作者 张朝阳 冉秀康 《现代电子技术》 北大核心 2024年第15期133-138,共6页
针对绝缘子小目标特征信息不足导致的检测精度低、模型体积大不利于硬件移植等问题,提出一种多尺度检测算法MPH-YOLO。MPH-YOLO首先通过扩充小目标检测尺度,提高小目标感知能力;其次使用SIoU损失函数代替YOLOv8s中的CIoU损失函数作为边... 针对绝缘子小目标特征信息不足导致的检测精度低、模型体积大不利于硬件移植等问题,提出一种多尺度检测算法MPH-YOLO。MPH-YOLO首先通过扩充小目标检测尺度,提高小目标感知能力;其次使用SIoU损失函数代替YOLOv8s中的CIoU损失函数作为边框损失函数,增强对目标的定位精度;最后引入更低成本的Ghost卷积代替网络结构中的传统卷积,轻量化模型的体积。改进后的算法在绝缘子数据集上的检测精度和模型轻量化均有提升,检测精度mAP50-95为86.2%,模型体积仅有4.7 MB。实验结果表明,MPH-YOLO不仅能够有效改善小目标检测,而且更加轻量化有利于硬件移植,具有较高的实用价值。 展开更多
关键词 绝缘子 多尺度检测 小目标 YOLOv8s sIoU ghost卷积
下载PDF
基于改进YOLOv5s的航拍红外图像目标识别方法
4
作者 王悠 韩立祥 付贵 《红外技术》 CSCD 北大核心 2024年第7期775-781,801,共8页
为了提高无人机在黑暗条件下的识别效率,降低在复杂环境及路况方面存在漏检及延时效果等问题,本文提出了一种改进的YOLOv5s-GN-CB红外图像识别方法,该方法可以提高无人机红外航拍图像对车、人等多类目标识别效率。本文对YOLOv5s的主要... 为了提高无人机在黑暗条件下的识别效率,降低在复杂环境及路况方面存在漏检及延时效果等问题,本文提出了一种改进的YOLOv5s-GN-CB红外图像识别方法,该方法可以提高无人机红外航拍图像对车、人等多类目标识别效率。本文对YOLOv5s的主要改进包括以下3个方面:将Ghost引入到YOLOv5s主干网络中,并将NWD loss损失函数融入至Ghost中;添加注意力机制CA;添加加权双向特征金字塔BiFPN。经验证,改进的YOLOv5s-GN-CB检测模型在InfiRay红外航拍人车检测数据集下目标识别平均精度均值(mAP@0.5)达到95.1%,FPS提高至75.188帧/s。相较于YOLOv5原始模型的平均精度均值和FPS分别提高了4.2%和12.02%。在对同一场景中无人机航拍红外图像目标识别的检测精度有明显提升,延时率有所下降。 展开更多
关键词 红外目标检测 改进YOLOv5s ghost网络 注意力机制
下载PDF
基于YOLOv5s轻量化改进的LCD缺陷检测方法
5
作者 王新杰 高祥 +1 位作者 赵云龙 唐林 《四川轻化工大学学报(自然科学版)》 CAS 2024年第2期73-83,共11页
针对目前LCD缺陷检测速度较慢、检测精度较低的现状,本文提出一种YOLOv5s轻量化改进模型来检测识别LCD所存在的缺陷情况。通过改进上采样CARAFE算子进行Nearest的替换,并修改其kencoder与kreassembly两项参数进行对比;同时,增加CBAM注... 针对目前LCD缺陷检测速度较慢、检测精度较低的现状,本文提出一种YOLOv5s轻量化改进模型来检测识别LCD所存在的缺陷情况。通过改进上采样CARAFE算子进行Nearest的替换,并修改其kencoder与kreassembly两项参数进行对比;同时,增加CBAM注意力机制,更加关注目标区域特征信息以提升模型召回率;最后进行轻量化设计替换C3为C3_Ghost,以达到参数量、运输量以及模型大小的减小。实验结果说明,改进YOLOv5s算法在原模型基础上,准确率P提高了2.1%,召回率R提高了5.4%,模型平均精度mAP达到88.8%,相对于改进前提高了2.1%,参数量和运算量分别减少了15.6%和20.9%,并且模型大小减少了14.6%。整体而言,改进后的算法模型更加轻量化,模型MB减小并且参数量以及运算量相对减少,因此方便对低算力硬件进行部署,同时也为LCD工厂智能检测技术提供一定技术参考。 展开更多
关键词 LCD缺陷检测 轻量化 CARAFE ghost YOLOv5s
下载PDF
基于GBS-YOLOv5s的煤矿烟火检测
6
作者 魏少雄 钟本源 《煤》 2024年第7期11-13,41,共4页
针对现有的煤炭烟火检测方法精确度低、参数量大、算法复杂度高等问题,提出了一种基于GBS-YOLOv5s的煤矿烟火检测算法。使用Ghost卷积模块实现特征提取,在原始算法上加入Ghost Bottleneck模块来减少模型参数量。其次,通过在SPPF模块后... 针对现有的煤炭烟火检测方法精确度低、参数量大、算法复杂度高等问题,提出了一种基于GBS-YOLOv5s的煤矿烟火检测算法。使用Ghost卷积模块实现特征提取,在原始算法上加入Ghost Bottleneck模块来减少模型参数量。其次,通过在SPPF模块后面加入全局上下文特征提取BoT3模块,增加对小目标的检测效果。最后,引入一种新的Soft-NMS算法,降低这些边界框的置信度,提升召回率,减少重叠目标的漏检。实验结果表明:GBS-YOLOv5s目标检测算法优于YOLOv5s算法,准确率提升了3.3%,每秒的浮点运算数GFLOPs减少了7.6 G,可以满足煤矿场景下对模型检测的要求。 展开更多
关键词 YOLOv5s算法 目标检测 ghost模块 BoT3模块 GFLOPs
下载PDF
基于Ghost卷积和YOLOv5s网络的服装检测 被引量:5
7
作者 李雪 吴圣明 +1 位作者 马丽丽 陈金广 《计算机系统应用》 2022年第7期203-209,共7页
为了降低服装目标检测模型的参数量和浮点型计算量,提出一种改进的轻量级服装目标检测模型——GYOLOv5s.首先使用Ghost卷积重构YOLOv5s的主干网络;然后使用DeepFashion2数据集中的部分数据进行模型训练和验证;最后将训练好的模型用于服... 为了降低服装目标检测模型的参数量和浮点型计算量,提出一种改进的轻量级服装目标检测模型——GYOLOv5s.首先使用Ghost卷积重构YOLOv5s的主干网络;然后使用DeepFashion2数据集中的部分数据进行模型训练和验证;最后将训练好的模型用于服装图像的目标检测.实验结果表明,G-YOLOv5s的mAP达到71.7%,模型体积为9.09 MB,浮点型计算量为9.8 G FLOPs,与改进前的YOLOv5s网络相比,模型体积压缩了34.8%,计算量减少了41.3%,精度仅下降1.3%,方便部署在资源有限的设备中使用. 展开更多
关键词 服装图像 目标检测 YOLOv5s DeepFashion2 ghost卷积 轻量级 深度学习
下载PDF
基于Ghost Module的轻量级脑肿瘤3D MRI分割研究
8
作者 刘丽伟 赵强 《长春工业大学学报》 CAS 2022年第6期686-692,共7页
针对当下三维CNN对脑肿瘤MRI分割时训练参数量过大、网络收敛性差、训练时间过长的问题,提出S-GG Net。先通过对轻量级结构Ghost Module进行改进形成Shuffle-Ghost Module;并以此为基础单元形成两种残差结构,网络仿造U-Net结构分别对网... 针对当下三维CNN对脑肿瘤MRI分割时训练参数量过大、网络收敛性差、训练时间过长的问题,提出S-GG Net。先通过对轻量级结构Ghost Module进行改进形成Shuffle-Ghost Module;并以此为基础单元形成两种残差结构,网络仿造U-Net结构分别对网络的压缩路径、扩展路径进行重新构建。在公开的脑肿瘤数据集BraTs进行实验得知,文中方法在大幅缩减参数量的情况下,仍然能够保证训练效果。 展开更多
关键词 脑肿瘤分割 3D MRI 轻量级改进 s-GGNet
下载PDF
基于改进YOLOv5s的铸坯表面缺陷检测系统
9
作者 邓能辉 周秉国 +2 位作者 张志杰 石杰 吴昆鹏 《仪表技术与传感器》 CSCD 北大核心 2023年第10期72-78,共7页
针对目前连铸坯表面缺陷检测方法存在检测准确率和效率低的问题,提出了一种基于改进YOLOv5s的连铸坯表面缺陷检测系统。首先,基于CycleGAN的域迁移能力和冷轧样本集实现铸坯复杂背景的简单化。其次,利用Ghost网络和GhostBottleneck重新... 针对目前连铸坯表面缺陷检测方法存在检测准确率和效率低的问题,提出了一种基于改进YOLOv5s的连铸坯表面缺陷检测系统。首先,基于CycleGAN的域迁移能力和冷轧样本集实现铸坯复杂背景的简单化。其次,利用Ghost网络和GhostBottleneck重新构建YOLOv5s的特征提取骨架以达到轻量化网络结构提高检测速度的目的。最后,在YOLOv5s颈部模块中嵌入SE注意力机制以提升缺陷关键信息捕捉能力,从而提高检测准确率。实验结果表明,改进YOLOv5s在铸坯表面图像数据集上mAP指标达到93.6%,相较于原始的YOLOv5s,mAP指标提升了2.9%,计算量降低了2.5 FLOPs。能够满足铸坯表面缺陷检测系统的实时要求及准确率指标,并且降低了部署所需的计算资源。 展开更多
关键词 铸坯 缺陷检测 CycleGAN YOLOv5s ghost ghostBottleneck sE注意力机制
下载PDF
Swann in Spain: Proust's Ghost in the Novels of Javier Marias
10
作者 Sonia Assa 《Journal of Literature and Art Studies》 2015年第9期723-733,共11页
Since the publication of Coraz6n tan blanco (A Heart so White) (1992), many critics have compared the Spanish novelist Javier Marias to Marcel Proust. Both favor long, meandering sentences, in which they insert vo... Since the publication of Coraz6n tan blanco (A Heart so White) (1992), many critics have compared the Spanish novelist Javier Marias to Marcel Proust. Both favor long, meandering sentences, in which they insert voluminous asides. In thematic terms, their narratives are constantly involved with meditation over the extent to which we can understand the past, or the degree to which we can know either ourselves or others. Beyond their common preoccupation with time and memory, I will consider some remarkable similarities between Marias' and Proust's formative years and the role translation played in the development of their style. I will show the many ways in which Proust "haunts" Marias: in his metaphorical use of the translating practice, in his love of deferral, and in his brooding first-person narrators, racked by the anxiety of ignorance. 展开更多
关键词 Proust's ghost translation anxiety of ignorance first-person narrators
下载PDF
The Ghost Daughter Returns Home: Memory of Slavery in Toni Morrison's Beloved
11
作者 Grzegorz Kotecki 《Sociology Study》 2013年第12期933-940,共8页
This article aims to present Beloved, a ghost-in-the-flesh protagonist of Toni Morrison's Pulitzer Prize-winning novel Beloved (1987), as an incarnation of memory of slavery. Interpreted as personal and shared expe... This article aims to present Beloved, a ghost-in-the-flesh protagonist of Toni Morrison's Pulitzer Prize-winning novel Beloved (1987), as an incarnation of memory of slavery. Interpreted as personal and shared experience, Beloved will be analyzed on the basis of memory's dynamic nature as an active mnemonic agent operating in and between the individual and collective zones. It will be also argued that on the one hand, Beloved embodies memories of past slaved lives of the novel's central characters, Sethe and Paul D, while on the other hand she plays the role of an allegoric reminder of all Black slaves who lived and died in bondage on the American continent. Finally, Beloved will be symbolically seen as a historical, cultural and psychological link between contemporary African Americans and their African ancestors of the Middle Passage. The theoretical framework for this study of Morrison's most memorable ghost figure will follow from a discussion of memory's individual and shared qualities, as well as from the concepts of a collective consciousness, the collective unconscious, and collective memory. 展开更多
关键词 BELOVED ghosts MEMORY MORRIsON sLAVERY
下载PDF
基于改进YOLOv5s算法的行人检测方法
12
作者 陈斌 陈丽 《智能物联技术》 2023年第3期34-40,共7页
针对目前行人检测方法存在小目标检测难度大、漏检率高的问题,本文提出了一种改进YOLOv5s算法的行人检测方法。首先,增加一个小目标检测头,来增强模型对小目标的检测能力,根据自建数据集通过K-means聚类算法得到新的先验锚框尺寸;其次,... 针对目前行人检测方法存在小目标检测难度大、漏检率高的问题,本文提出了一种改进YOLOv5s算法的行人检测方法。首先,增加一个小目标检测头,来增强模型对小目标的检测能力,根据自建数据集通过K-means聚类算法得到新的先验锚框尺寸;其次,将CA嵌入到YOLOv5s颈部网络的浅层位置和引入新型跨尺度特征融合模块加权特征融合来增强特征提取能力;最后,基于Ghost Bottleneck对YOLOv5s的C3模块进行改进,旨在通过低成本操作生成更多有价值冗余特征图,有效减少模型参数。实验结果表明,与原始YOLOv5s相比,改进的YOLOv5s算法在行人检测任务上的准确率P提高了3.3%,召回率R提高了2.9%,mAP_0.5:0.95提高了2.6%,且减少了12.7%参数量,整体性能有显著提升。 展开更多
关键词 行人检测 YOLOv5s CA 新型跨尺度特征融合 ghost
下载PDF
基于YOLO v5的农田杂草识别轻量化方法研究
13
作者 冀汶莉 刘洲 邢海花 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期212-222,293,共12页
针对已有杂草识别模型对复杂农田环境下多种目标杂草的识别率低、模型内存占用量大、参数多、识别速度慢等问题,提出了基于YOLO v5的轻量化杂草识别方法。利用带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration, MS... 针对已有杂草识别模型对复杂农田环境下多种目标杂草的识别率低、模型内存占用量大、参数多、识别速度慢等问题,提出了基于YOLO v5的轻量化杂草识别方法。利用带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration, MSRCR)增强算法对部分图像数据进行预处理,提高边缘细节模糊的图像清晰度,降低图像中的阴影干扰。使用轻量级网络PP-LCNet重置了识别模型中的特征提取网络,减少模型参数量。采用Ghost卷积模块轻量化特征融合网络,进一步降低计算量。为了弥补轻量化造成的模型性能损耗,在特征融合网络末端添加基于标准化的注意力模块(Normalization-based attention module, NAM),增强模型对杂草和玉米幼苗的特征提取能力。此外,通过优化主干网络注意力机制的激活函数来提高模型的非线性拟合能力。在自建数据集上进行实验,实验结果显示,与当前主流目标检测算法YOLO v5s以及成熟的轻量化目标检测算法MobileNet v3-YOLO v5s、ShuffleNet v2-YOLO v5s比较,轻量化后杂草识别模型内存占用量为6.23 MB,分别缩小54.5%、12%和18%;平均精度均值(Mean average precision, mAP)为97.8%,分别提高1.3、5.1、4.4个百分点。单幅图像检测时间为118.1 ms,达到了轻量化要求。在保持较高模型识别精度的同时大幅降低了模型复杂度,可为采用资源有限的移动端设备进行农田杂草识别提供技术支持。 展开更多
关键词 杂草识别 目标检测 YOLO v5s 轻量化特征提取网络 ghost卷积模块 注意力机制
下载PDF
基于改进的YOLOv5模型和射线法的车辆违停检测 被引量:1
14
作者 庄建军 徐子恒 张若愚 《南京信息工程大学学报》 CAS 北大核心 2024年第3期341-351,共11页
车辆违法停车将会降低道路通行效率,引发交通拥堵和交通事故.传统的车辆违停检测方法参数量大且准确度低.为此,本文提出了一种使用改进的YOLOv5模型和射线法的车辆违停检测方法.首先设计了轻量化的特征提取模块,减少模型参数量;其次在... 车辆违法停车将会降低道路通行效率,引发交通拥堵和交通事故.传统的车辆违停检测方法参数量大且准确度低.为此,本文提出了一种使用改进的YOLOv5模型和射线法的车辆违停检测方法.首先设计了轻量化的特征提取模块,减少模型参数量;其次在模型中加入注意力机制,从通道维度和空间维度增强模型的特征提取能力,保证模型精度;接着使用混合数据增强丰富数据集样本,提升复杂背景下的检测效果;然后选用EIoU作为损失函数提高模型定位能力.实验结果表明,改进后的模型均值平均精度达到91.35%,比原始YOLOv5s提升1.01个百分点,并且参数量减少35.79%.最后将改进后模型与射线法结合,在Jetson Xavier NX嵌入式平台的检测速度可以达到约28帧/s,能够实现实时检测. 展开更多
关键词 车辆违停检测 YOLOv5s算法 ghost卷积 注意力机制 射线法
下载PDF
基于改进YOLOv5的轻量化车辆行人雾天检测模型
15
作者 肖顺兴 朱文忠 +2 位作者 谢康康 谢林森 何海东 《四川轻化工大学学报(自然科学版)》 CAS 2024年第3期77-86,共10页
车辆行人检测是智能交通的重要组成部分。针对现有车辆检测算法模型容量大、参数量较多、占用内存大,难以在智能交通场景中适用于算力和内存均有限的边缘设备的问题,提出了一种基于YOLOv5s算法改进的轻量级目标检测网络。首先,将YOLOv5... 车辆行人检测是智能交通的重要组成部分。针对现有车辆检测算法模型容量大、参数量较多、占用内存大,难以在智能交通场景中适用于算力和内存均有限的边缘设备的问题,提出了一种基于YOLOv5s算法改进的轻量级目标检测网络。首先,将YOLOv5s网络的卷积模块更换成Ghost卷积,以此减少计算量和参数量;其次,采用改进的加权双向特征金塔网络(BiFPN)结构和非极大值抑制(NMS)算法提高模型的精确度;最后,通过Real-world Task-Driven Testing Set(RTTS)雾天数据集对该方法进行模型训练及验证,以测试模型的有效性。实验结果表明,改进YOLOv5的轻量化雾天检测模型在分辨率为640×640的图像上平均检测精度达88.5%,模型大小约为7.5 M,浮点型计算量为8.20 GFLOPs。与原YOLOv5s网络相比,模型大小减少了46.4%,浮点型计算量压缩到原来的52%,精确度提高0.9%,回归率提高0.5%,平均精度提升1.1%。改进后的车辆检测算法在模型轻量化的同时不仅能够保证较高的检测精度,而且能够满足在算力资源有限的边缘设备进行车辆检测的需求。 展开更多
关键词 目标检测 轻量级 YOLOv5s ghost卷积
下载PDF
改进YOLOv5s的交通标志识别算法 被引量:6
16
作者 乔欢欢 权恒友 +1 位作者 邱文利 闫润禾 《计算机系统应用》 2022年第12期273-279,共7页
为了准确且实时地检测到交通标志指示牌,减少交通事故的发生和推动智慧交通的发展,针对现有的道路交通标志检测模型存在的精度不足、权重文件大、检测速度慢的问题,设计了一种基于计算机视觉技术的改进YOLOv5s检测算法YOLOv5s-GC.首先,... 为了准确且实时地检测到交通标志指示牌,减少交通事故的发生和推动智慧交通的发展,针对现有的道路交通标志检测模型存在的精度不足、权重文件大、检测速度慢的问题,设计了一种基于计算机视觉技术的改进YOLOv5s检测算法YOLOv5s-GC.首先,使用copy-paste进行数据增强后再送入网络进行训练,加强对小目标的检测能力;然后,引入Ghost来构建网络,削减原网络的参数和计算量,实现轻量化模型;最后,将坐标注意力机制(coordinate attention)融合到骨干网络里,增强对待测目标的表示和定位能力,提高识别精度.实验结果表明,YOLOv5s-GC模型相比于原YOLOv5s模型,参数数目减少了12%,检测速度提高了22%,平均精度达到了94.2%,易于部署且能满足实际自动驾驶场景中对识别交通标志的速度和准确度要求. 展开更多
关键词 交通标志 计算机视觉 YOLOv5s 注意力机制 ghost
下载PDF
陆上高分辨率地震勘探炸药震源激发条件分析 被引量:15
17
作者 李桂林 陶宗普 +3 位作者 陈春强 雷勋毅 杨红梅 贾烈明 《石油物探》 EI CSCD 2005年第2期183-186,共4页
从理论上分析了激发井深、虚反射效应、岩性与炸药类型的耦合关系等激发条件对地震勘探分辨率的影 响。利用周口盆地黄淮冲积平原、宜阳凹陷黄土塬和塔里木盆地沙漠区的高分辨率地震资料,分析了不同地表 条件下的激发因素,提出了在复杂... 从理论上分析了激发井深、虚反射效应、岩性与炸药类型的耦合关系等激发条件对地震勘探分辨率的影 响。利用周口盆地黄淮冲积平原、宜阳凹陷黄土塬和塔里木盆地沙漠区的高分辨率地震资料,分析了不同地表 条件下的激发因素,提出了在复杂地表条件下如何选择最佳激发因素,以获得最好的单炮记录的施工方法。 展开更多
关键词 高分辨率地震勘探 条件分析 震源激发 高分辨率地震资料 陆上 复杂地表条件 激发因素 塔里木盆地 激发井深 反射效应 激发条件 耦合关系 炸药类型 冲积平原 周口盆地 施工方法 沙漠区 黄土塬 岩性 凹陷
下载PDF
基于格林理论的鬼波压制方法及其应用 被引量:11
18
作者 杨金龙 Weglein Arthur B 《石油物探》 EI CSCD 北大核心 2017年第4期507-515,533,共10页
海洋地震资料存在受海水面虚反射(鬼波)引起的陷波效应,为此,从散射理论出发,提出了基于格林理论的空间-频率(x-ω)域任意震源鬼波压制方法,并详细论述了其物理意义。在一维理论数据分析的基础上,形成了格林理论鬼波压制处理流程。利用... 海洋地震资料存在受海水面虚反射(鬼波)引起的陷波效应,为此,从散射理论出发,提出了基于格林理论的空间-频率(x-ω)域任意震源鬼波压制方法,并详细论述了其物理意义。在一维理论数据分析的基础上,形成了格林理论鬼波压制处理流程。利用模拟数据和实际数据进行了测试,实现了基于上下缆和双检采集地震资料的鬼波压制。处理结果表明,此方法完全基于地震数据驱动,无需任何地下介质信息,适用于各种复杂的海洋地形和地质情况。鬼波压制后地震资料的频带得到有效拓宽、地震资料的分辨率得到提高,有利于地震资料的后续处理和解释。 展开更多
关键词 虚反射 陷波效应 鬼波压制 散射理论 格林理论
下载PDF
基于改进YOLOv5s模型的红外弱小目标检测方法
19
作者 张建君 陈玉丹 +2 位作者 刘玉玲 张明明 黄富瑜 《应用光学》 CAS 2024年第5期975-981,共7页
针对复杂背景下红外场景对比度低、特征不足、细节不清而导致的目标检测效率低的问题,在YOLOv5s模型基础上通过创建TCC(two-way convolution and Concat)模块并引入华为Ghost模块,提出了一种基于改进YOLOv5s模型的红外弱小目标检测方法... 针对复杂背景下红外场景对比度低、特征不足、细节不清而导致的目标检测效率低的问题,在YOLOv5s模型基础上通过创建TCC(two-way convolution and Concat)模块并引入华为Ghost模块,提出了一种基于改进YOLOv5s模型的红外弱小目标检测方法。首先,结合红外图像的低级语义特征,采取二路卷积和多尺度思想创建了TCC模块,提升了特征提取的全面性;接着,为进一步简化网络结构、减少网络参数量,引入轻量化Ghost模块改进了SPP池化层和CSP2卷积网络;最后,以无人机为实验对象,构建了白天和夜间不同背景条件下的红外弱小目标数据集,实验验证了本文改进算法的有效性。结果表明:改进后的YOLOv5s模型在较少损失帧频的情况下,检测精度提升了1.34%,平均精度均值(mean average precision, mAP)提升了2.26%,优于YOLOv4-tiny和YOLOv7-tiny两种轻量化模型,并与YOLOv8s模型精度相当,但模型参数量仅为YOLOv8s模型的53%,完全可以满足嵌入式设备部署的需求。 展开更多
关键词 目标检测 红外弱小目标 YOLOv5s TCC模块 ghost模块
下载PDF
基于边缘计算和改进YOLOv5s算法的输电线路故障实时检测方法 被引量:17
20
作者 黄悦华 陈照源 +3 位作者 陈庆 张磊 刘恒冲 张家瑞 《电力建设》 CSCD 北大核心 2023年第1期91-99,共9页
随着输电线路无人机巡检工作的常态化,暴露出故障图像检测实时性、模糊目标检测精准性难以满足实际工作需求的问题。文章提出一种基于边缘计算和改进YOLOv5s算法的输电线路故障实时检测方法。以YOLOv5s为基础检测模型,基于Ghost轻量化... 随着输电线路无人机巡检工作的常态化,暴露出故障图像检测实时性、模糊目标检测精准性难以满足实际工作需求的问题。文章提出一种基于边缘计算和改进YOLOv5s算法的输电线路故障实时检测方法。以YOLOv5s为基础检测模型,基于Ghost轻量化模块重构模型获取数据特征的卷积操作过程,提高了模型的检测速度;采用基于KL散度分布的损失函数作为目标框定位损失函数,提升了模型对模糊图像检测的精度。将改进的YOLOv5s算法部署于华为Atlas 200 DK边缘模块中,对绝缘子自爆、防震锤脱落、鸟巢3类故障进行检测,其平均精度均值可达84.75%,检测速度为34 frame/s。结果表明,改进的算法在保证检测实时性的同时,能够提升对模糊故障目标图像的检测精度,满足无人机搭载边缘设备的输电线路巡检需求。 展开更多
关键词 边缘计算 输电线路故障 YOLOv5s 实时检测 ghost轻量化模块 KL散度
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部