To assess the genetic diversity between randomly and selectively bred populations,we sequenced 438 bp of the mitochondrial DNA control region from 102 pigs.These samples represented four native pig breeds,one nucleus ...To assess the genetic diversity between randomly and selectively bred populations,we sequenced 438 bp of the mitochondrial DNA control region from 102 pigs.These samples represented four native pig breeds,one nucleus and one conservation herd from Yunnan,China.Twenty haplotypes with sixteen polymorphic sites were identified.The number of haplotypes in the nucleus herd of Saba pig and the conservation herd of Banna miniature pig were restricted to three and one,respectively,while the randomly bred pig populations exhibited over six haplotypes.Notably,haplotype diversity in randomly bred populations was significantly greater than the selectively bred populations(h=0.732 vs.0.425 and 0,exact test,P≤0.0036).These findings demonstrate that selective breeding generated low genetic diversity compared to randomly bred pig breeds.A timely intervention and well programmed breeding approach would stop further genetic diversity reduction in the nucleus and conservation herds of native pig breeds.Otherwise,selective breeding would dramatically reduce genetic diversity in only several years,indicating that sharp contradictions exist between breeding,conservation and genetic diversity.Genetic relationships are discussed based on net genetic distances among pig populations.展开更多
The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to ...The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to catch the growing components in analysis errors. However, the bred vectors (BVs) are evolved on the same dynamical flow, which may increase the dependence of perturbations. In contrast, the nonlinear local Lyapunov vector (NLLV) scheme generates flow-dependent perturbations as in the breeding method, but regularly conducts the Gram-Schmidt reorthonormalization processes on the perturbations. The resulting NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more com- ponents in analysis errors than the BVs. In this paper, the NLLVs are employed to generate initial ensemble perturbations in a barotropic quasi-geostrophic model. The performances of the ensemble forecasts of the NLLV method are systematically compared to those of the random pertur- bation (RP) technique, and the BV method, as well as its improved version--the ensemble transform Kalman filter (ETKF) method. The results demonstrate that the RP technique has the worst performance in ensemble forecasts, which indicates the importance of a flow-dependent initialization scheme. The ensemble perturbation subspaces of the NLLV and ETKF methods are preliminarily shown to catch similar components of analysis errors, which exceed that of the BVs. However, the NLLV scheme demonstrates slightly higher ensemble forecast skill than the ETKF scheme. In addition, the NLLV scheme involves a significantly simpler algorithm and less computation time than the ETKF method, and both demonstrate better ensemble forecast skill than the BV scheme.展开更多
The breeding method has been widely used in studies of data assimilation, predictability and instabilities. The bred vectors (BVs), which are the nonlinear difference between the control and perturbed runs, represen...The breeding method has been widely used in studies of data assimilation, predictability and instabilities. The bred vectors (BVs), which are the nonlinear difference between the control and perturbed runs, represent the time-evolving rapidly growing errors in dynamic systems. The Lorenz (1963) model (hereafter Lorenz63 model) has chaotic dynamics similar to weather and climate. This study investigates the features of BVs of the Lorenz63 model and its impact on regime prediction of the Lorenz63 model. The results show that the Lorenz63 model has two different BVs for each breeding cycle, and the two BVs approach being identical when growth rate is high. The duration of the current and next regime is associated with the relative directions between the BV with high growth rate and the model trajectory.展开更多
A male sterile line with wide Compatibility,064A was successfully bred in CNRRI which not only has good compatibility with japonica and indica rice but also has stable and high sterility and good flowering habit. High...A male sterile line with wide Compatibility,064A was successfully bred in CNRRI which not only has good compatibility with japonica and indica rice but also has stable and high sterility and good flowering habit. High yield had been obtained when 064A was crossed with an indica restore line, Minhui 63 or a japonica restore line, 9512. This new male sterile line is anticipated as a very promising material for developing super—high yielding rice.展开更多
基金supported by research grants of the National Basic Research Program of China (2007CB815700 2006CB102100)Bureau of Science and Technology of Yunnan Province, and Natural Science Foundation of China (30621092)
文摘To assess the genetic diversity between randomly and selectively bred populations,we sequenced 438 bp of the mitochondrial DNA control region from 102 pigs.These samples represented four native pig breeds,one nucleus and one conservation herd from Yunnan,China.Twenty haplotypes with sixteen polymorphic sites were identified.The number of haplotypes in the nucleus herd of Saba pig and the conservation herd of Banna miniature pig were restricted to three and one,respectively,while the randomly bred pig populations exhibited over six haplotypes.Notably,haplotype diversity in randomly bred populations was significantly greater than the selectively bred populations(h=0.732 vs.0.425 and 0,exact test,P≤0.0036).These findings demonstrate that selective breeding generated low genetic diversity compared to randomly bred pig breeds.A timely intervention and well programmed breeding approach would stop further genetic diversity reduction in the nucleus and conservation herds of native pig breeds.Otherwise,selective breeding would dramatically reduce genetic diversity in only several years,indicating that sharp contradictions exist between breeding,conservation and genetic diversity.Genetic relationships are discussed based on net genetic distances among pig populations.
文摘The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to catch the growing components in analysis errors. However, the bred vectors (BVs) are evolved on the same dynamical flow, which may increase the dependence of perturbations. In contrast, the nonlinear local Lyapunov vector (NLLV) scheme generates flow-dependent perturbations as in the breeding method, but regularly conducts the Gram-Schmidt reorthonormalization processes on the perturbations. The resulting NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more com- ponents in analysis errors than the BVs. In this paper, the NLLVs are employed to generate initial ensemble perturbations in a barotropic quasi-geostrophic model. The performances of the ensemble forecasts of the NLLV method are systematically compared to those of the random pertur- bation (RP) technique, and the BV method, as well as its improved version--the ensemble transform Kalman filter (ETKF) method. The results demonstrate that the RP technique has the worst performance in ensemble forecasts, which indicates the importance of a flow-dependent initialization scheme. The ensemble perturbation subspaces of the NLLV and ETKF methods are preliminarily shown to catch similar components of analysis errors, which exceed that of the BVs. However, the NLLV scheme demonstrates slightly higher ensemble forecast skill than the ETKF scheme. In addition, the NLLV scheme involves a significantly simpler algorithm and less computation time than the ETKF method, and both demonstrate better ensemble forecast skill than the BV scheme.
基金supported by the ONR(Office of Naval Research)(Grant No.N00014-10-1-0557)the Civil,Mechanical and Manufacturing Innovation Division of the NSF(National Science Foundation)(Grant No.CMMI112585)NASA(National Aeronautic and Space Administration)(Grant No.5069UMNASAMI3G)
文摘The breeding method has been widely used in studies of data assimilation, predictability and instabilities. The bred vectors (BVs), which are the nonlinear difference between the control and perturbed runs, represent the time-evolving rapidly growing errors in dynamic systems. The Lorenz (1963) model (hereafter Lorenz63 model) has chaotic dynamics similar to weather and climate. This study investigates the features of BVs of the Lorenz63 model and its impact on regime prediction of the Lorenz63 model. The results show that the Lorenz63 model has two different BVs for each breeding cycle, and the two BVs approach being identical when growth rate is high. The duration of the current and next regime is associated with the relative directions between the BV with high growth rate and the model trajectory.
文摘A male sterile line with wide Compatibility,064A was successfully bred in CNRRI which not only has good compatibility with japonica and indica rice but also has stable and high sterility and good flowering habit. High yield had been obtained when 064A was crossed with an indica restore line, Minhui 63 or a japonica restore line, 9512. This new male sterile line is anticipated as a very promising material for developing super—high yielding rice.