期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Diaphragm wall-soil-cap interaction in rectangular-closed-diaphragm-wall bridge foundations 被引量:6
1
作者 Hua WEN Qiangong CHENG +1 位作者 Fanchao MENG Xiaodong CHEN 《Frontiers of Structural and Civil Engineering》 SCIE EI 2009年第1期93-100,共8页
Rectangular-closed-diaphragm-wall foundation is a new type of bridge foundation.Diaphragm wallsoil-cap interaction was studied using a model test.It was observed that the distribution of soil resistance under the cap ... Rectangular-closed-diaphragm-wall foundation is a new type of bridge foundation.Diaphragm wallsoil-cap interaction was studied using a model test.It was observed that the distribution of soil resistance under the cap is not homogeneous.The soil resistance in the corner under the cap is larger than that in the border;and that in the center is the smallest.The distribution of soil resistance under the cap will be more uniform,if the sectional area of soil core is enlarged within a certain range.Due to the existence of cap,there is a“weakening effect”in inner shaft resistance of the upper wall segments,and there is“enhancement effect”in the lower wall segments and in toe resistance.The load shearing percentage of soil resistance under the cap is 10%–20%.It is unreasonable to ignore the effects of the cap and the soil resistance under the cap in bearing capacity calculations. 展开更多
关键词 diaphragm wall bridge foundation low cap INTERACTION
原文传递
Experimental study on seismic reinforcement of bridge foundation on silty clay landslide with inclined interlayer
2
作者 Lei Da Xiao Hanmo +3 位作者 Ran Jianhua Luo Bin Jiang Guanlu Xue Tianlang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期193-207,共15页
A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and ... A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles. 展开更多
关键词 silty clay landslide inclined interlayer shaking table test anti-slide pile bridge foundation pile
下载PDF
Discussion on Construction Technology of Subway Tunnel Expansion under Bridge Foundation
3
作者 Ruiquan Liu 《Journal of Architectural Research and Development》 2024年第2期37-42,共6页
As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of con... As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of construction technology.This article focuses on the construction technology of the subway tunnel expansion under the bridge foundation.By analyzing the engineering characteristics of the bridge foundation and using a project as an example,this article provides a detailed discussion of the construction process of tunnel expansion under a bridge foundation.This article aims to serve as a reference for subway tunnel construction in China to ensure the key points of construction technology are understood,thus improving construction quality and laying a solid technical foundation for the sustainable development of urban rail engineering. 展开更多
关键词 Subway tunnel bridge foundation underpass expansion Construction technology Steel truss support construction
下载PDF
Construction Technology of Pile Foundation for Subway Tunnel Crossing Bridge
4
作者 Ruiquan Liu 《Journal of World Architecture》 2024年第2期37-42,共6页
Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influe... Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference. 展开更多
关键词 Subway tunnel bridge pile foundation Replacement construction
下载PDF
Determination of undrained shear strength using piezocone penetration test in clayey soil for bridge foundation 被引量:5
5
作者 童立元 王强 +2 位作者 杜广印 刘松玉 蔡国军 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期201-205,共5页
In order to obtain the reasonable undrained shear strength Su for geotechnical analyses of bridge foundations in Yangtze River floodplain clayey soils, a site-specific study is conducted using the imported piezocone p... In order to obtain the reasonable undrained shear strength Su for geotechnical analyses of bridge foundations in Yangtze River floodplain clayey soils, a site-specific study is conducted using the imported piezocone penetration test (CPTu) with dissipation phases at the Fourth Nanjing Yangtze River Bridge construction sites. Taking the values of Su from laboratory tests as references, several existing Su-predicted methods based on CPTu are compared and evaluated. To verify the presented cone factor Nk, additional test sites are selected and examined. The results show that the values of cone factors such as Nkt, Nke, and Nau, depend on the shear test mode and disturbance. Generally, the values of Nke show more scattering than those of Nkt and N△u. For the stratified and layered sediments of the Yangtze River floodplain, it is recommended using the net cone resistance qT to estimate Su and the preliminary cone factor values Nkt are from 7 to 16, with an average of 11. It is also confirmed that the CPTu test, as a new technique in site characterization, can present reasonable parameters for bridge foundations. 展开更多
关键词 undrained shear strength piezocone penetrationtest clayey soil cone factor bridge foundation
下载PDF
Bridge Pressure Flow Scour at Clear Water Threshold Condition
6
作者 郭俊克 KERENYI Kornel +1 位作者 PAGAN-ORTIZ Jorge E FLORA Kevin 《Transactions of Tianjin University》 EI CAS 2009年第2期79-94,共16页
Bridge pressure flow scour at clear water threshold condition is studied theoretically and experimentally.The flume experiments reveal that the measured scour profiles under a bridge are more or less 2-dimensional;all... Bridge pressure flow scour at clear water threshold condition is studied theoretically and experimentally.The flume experiments reveal that the measured scour profiles under a bridge are more or less 2-dimensional;all the measured scour profiles can be described by two similarity equations,where the horizontal distance is scaled by the deck width while the local scour by the maximum scour depth;the maximum scour position is located just under the bridge about 15% deck width from the downstream deck edge;the scour begins at about one deck width upstream the bridge while the deposition occurs at about 2.5 deck widths downstream the bridge;and the maximum scour depth decreases with increas-ing sediment size,but increases with deck inundation.The theoretical analysis shows that:bridge scour can be divided into three cases,i.e.downstream unsubmerged,partially submerged,and totally submerged.For downstream unsubmerged flows,the maximum bridge scour depth is an open-channel problem where the conventional methods in terms of critical velocity or bed shear stress can be applied;for partially and totally submerged flows,the equilibrium maximum scour depth can be described by a scour and an inundation similarity number,which has been confirmed by experiments with two decks and two sediment sizes.For application,a design and field evaluation procedure with examples is presented,including the maximum scour depth and scour profile. 展开更多
关键词 bridge decks bridge design bridge foundations bridge hydraulics bridge inundation bridge scour pressure flows pressure scour submerged flows.
下载PDF
A computational method for post-construction settlement of high-speed railway bridge pile foundation considering soil creep effect 被引量:12
7
作者 冯胜洋 魏丽敏 +1 位作者 何重阳 何群 《Journal of Central South University》 SCIE EI CAS 2014年第7期2921-2927,共7页
Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using th... Based on reasonable assumptions that simplified the calculational model,a simple and practical method was proposed to calculate the post-construction settlement of high-speed railway bridge pile foundation by using the Mesri creep model to describe the soil characteristics and the Mindlin-Geddes method considering pile diameter to calculate the vertical additional stress of pile bottom.A program named CPPS was designed for this method to calculate the post-construction settlement of a high-speed railway bridge pile foundation.The result indicates that the post-construction settlement in 100 years meets the requirements of the engineering specifications,and in the first two decades,the post-construction settlement is about 80% of its total settlement,while the settlement in the rest eighty years tends to be stable.Compared with the measured settlement after laying railway tracks,the calculational result is closed to that of the measured,and the results are conservative with a high computational accuracy.It is noted that the method can be used to calculate the post-construction settlement for the preliminary design of high-speed railway bridge pile foundation. 展开更多
关键词 high-speed railway bridge pile foundation post-construction settlement Mesri creep model simplified computational method
下载PDF
Influence of water-rich tunnel by shield tunneling on existing bridge pile foundation in layered soils 被引量:7
8
作者 HUANG Kan SUN Yi-wei +3 位作者 ZHOU De-quan LI Yu-jian JIANG Meng HUANG Xian-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2574-2588,共15页
At present,shield tunneling often needs to pass through a large number of bridge pile foundations.However,there are few studies on the influence of shield tunneling on adjacent pile foundations by combining with groun... At present,shield tunneling often needs to pass through a large number of bridge pile foundations.However,there are few studies on the influence of shield tunneling on adjacent pile foundations by combining with groundwater seepage.Based on Winkler model,the calculation equations of shield tunneling on vertical and horizontal displacement of adjacent bridge pile are derived.Meanwhile,full and part three-dimensional finite element models are established to analyze the trend of bridge pier settlement,ground surface settlement trough,vertical and horizontal displacement of the pile and pile stress under three calculation conditions,i.e.,not considering groundwater effect,considering stable groundwater effect and fluid-soil interaction.The results show that the calculated value is small when the effect of groundwater is not considered;the seepage velocity of the soil above the excavation face is faster than that of the surrounding soil under fluid-soil interaction,and after the shield passing,the groundwater on both sides shows a flow trend of“U”shape on the ground surface supplying to the upper part of the tunnel;the vertical displacement of the pile body is bounded by the horizontal position of the top of the tunnel,the upper pile body settles,and the lower pile body deforms upward.The horizontal displacement of pile body presents a continuous“S”shape distribution,causing stress concentration near the tunnel.The calculated results of fluid-soil interaction are in good agreement with the field measured data and accord with the actual situation. 展开更多
关键词 shield tunnel bridge pile foundation Winkler model fluid-soil interaction numerical analysis
下载PDF
Long-term settlement prediction of high-speed railway bridge pile foundation 被引量:4
9
作者 杨奇 冷伍明 +4 位作者 张升 聂如松 魏丽敏 赵春彦 刘维正 《Journal of Central South University》 SCIE EI CAS 2014年第6期2415-2424,共10页
The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensiona... The process and characteristics of loading on high-speed railway bridge pile foundation were firstly obtained by means of field research and analysis,and the corresponding loading function was presented.One-dimensional consolidation equation of elastic multilayered soils was then established with single drainage or double drainages under multilevel loading.Moreover,the formulas for calculating effective stress and settlement were derived from the Laplace numerical inversion transform.The three-dimensional composite analysis method of bridge pile group was improved,where the actual load conditions of pile foundation could be simulated,and the consolidation characteristics of soil layers beneath pile were also taken into account.Eventually,a corresponding program named LTPGS was developed to improve the calculation efficiency.The comparison between long-term settlement obtained from the proposed method and the in-situ measurements of pile foundation was illustrated,and a close agreement is obtained.The error between computed and measured results is less than 1 mm,and it gradually reduces with time.It is shown that the proposed method can effectively simulate the long-term settlement of pile foundation and program LTPGS can provide a reliable estimation. 展开更多
关键词 bridge pile foundation long-term settlement CONSOLIDATION Laplace numerical inversion transform multilevel loading multilayered soils
下载PDF
Research on Deformation and Force of Bridge Pile Foundation on High and Steep Slope in Mountainous Area 被引量:2
10
作者 Mingyue Zhang Hao Luo 《World Journal of Engineering and Technology》 2020年第3期551-564,共14页
With the rapid development of my country’s economy, the demand for infrastructure construction is also increasing. However, in most areas of China, the terrains are mountainous and hilly. Some projects have to be bui... With the rapid development of my country’s economy, the demand for infrastructure construction is also increasing. However, in most areas of China, the terrains are mountainous and hilly. Some projects have to be built on steep slopes. Choosing viaducts or half-bridges on high-steep slopes is not only conducive to the protection of the surrounding environment, but also conducive to the stability of the slope. Bridges usually choose the form of pile </span><span style="font-family:Verdana;">foundation-high pier bridge. This paper uses numerical simulation to study and analyze the bridge pile foundation of the slope section. Relying on actual</span><span style="font-family:Verdana;"> engineering, use the finite element software ABAQUS6.14 to establish a three-dimensional finite element model to study the bearing mechanism and mechanical characteristics of the pile foundation under vertical load, horizontal load and inclined load, discuss the influence of the nature of the soil around the pile and the stiffness of the pile body on the deformation and internal force of the bridge pile foundation in the slope section. The analysis results show that the horizontal load has a great influence on the horizontal displacement of the pile, but has a small influence on the vertical displacement, and the vertical load is just the opposite. Inclined load has obvious “p-Δ” effect. The increase in soil elastic modulus and pile stiffness will reduce the displacement of the pile foundation, but after reaching a certain range, the displacement of the pile foundation will tend to be stable. Therefore, in actual engineering, if the displacement of the pile foundation fails to meet the requirements, the hardness of the soil and the stiffness of the pile can be appropriately increased, but not blindly. 展开更多
关键词 High and Steep Slope bridge Pile Foundation Force and Deformation Analysis Influencing Factors
下载PDF
Comprehensive Detection and Analysis of Defects in Foundation Pile of Bridge 被引量:1
11
作者 王齐仁 何继善 杨天春 《Journal of China University of Mining and Technology》 2003年第2期179-182,共4页
In the process of piling ,there are many various defects in foundation pile of bridge such as mud-bearing,sediment-bearing, isolation, honeycomb, broken piles, and so on, showing physical and mechanical features of lo... In the process of piling ,there are many various defects in foundation pile of bridge such as mud-bearing,sediment-bearing, isolation, honeycomb, broken piles, and so on, showing physical and mechanical features of low-density and low-intensity. In fact, by using the comprehensive detection of acoustic transmission method, the reflected wave method as well as drill coring sample method, and the rational utilization of engineering geological condition in field, the characteristics, size and location of common defects of foundation pile of bridge can be accurately detected and judged and the integrity of piles and the quality of concrete can be impersonally estimated.comprehensive detecting and analyzing methods on this kind of piles are introduced briefly. The physical characters of defects and basic features of detecting curves and their corresponding relation are emphasized, and causes are analyzed in in detail in this paper. 展开更多
关键词 foundation pile of bridge comprehensive detecting characteristics of defect analysis of cause
下载PDF
Three-dimensional elasto-plastic finite element analysis of a soil-pilebridge interaction
12
作者 朱叶艇 ZHANG Zi-xin +1 位作者 YUAN Deng-ping HUANG Xin 《Journal of Chongqing University》 CAS 2017年第1期25-37,共13页
The soil-pile-bridge interaction of super-large pile groups is a very complex issue for the design of deep pile group foundations. In this paper, the load distribution on the pile top of a super large bridge foundatio... The soil-pile-bridge interaction of super-large pile groups is a very complex issue for the design of deep pile group foundations. In this paper, the load distribution on the pile top of a super large bridge foundation and its influential factors are analyzed comprehensively using a three-dimensional elasto-plastic finite element method. The adopted model and its input parameters are firstly verified by comparing the numerical results with the measured data of static loading tests of a single pile. Numerical analysis is then performed to investigate the load distribution and the load-settlement characteristics of super-large pile groups, and the models are verified using centrifuge laboratory model testing data. The mechanism of the interaction between pile groups and soil under different conditions is explored. 展开更多
关键词 finite element INTERACTION friction pile bridge foundation pile groups
下载PDF
A Research on the Behavior of a Polyurethane Polymer Waterproof Material Used in Bridge Geotechnical Applications
13
作者 Yuzhuo Wang Zhichao Xu 《Fluid Dynamics & Materials Processing》 EI 2022年第4期897-906,共10页
Polyurethane is enjoying a widespread use as a polymer-based waterproof material in civil engineering In the present study we consider a temperature-sensitive waterproof and moisture-permeable polyurethane material(PT... Polyurethane is enjoying a widespread use as a polymer-based waterproof material in civil engineering In the present study we consider a temperature-sensitive waterproof and moisture-permeable polyurethane material(PTPE-PU)characterized by one or more phase transition temperatures(critical temperatures).Near the critical temperature,the waterproof and moisture permeability of polyurethane undergo abrupt changes.The related stability,thermal performance,water resistance,hydrostatic pressure,and moisture permeability are investigated here considering a PTPE-PU traditionally used in bridge geotechnical engineering.The results show that the moisture permeability of the coated bridge rock and soil undergo sudden variations near the crystallization and melting temperature of the soft segment.The moisture permeability is 3000 g/(m^(2)d).The hydrostatic pressure of the coated bridge rock and soil is 3.5 kPa. 展开更多
关键词 Polyurethane polymer waterproof material temperature-sensitive type bridge foundation
下载PDF
Study on the Safety of the Rock Mass in the Tongling Bank of Taipinghu Bridge
14
作者 DUAN Hai-peng~(1,2), WANG Yun-sheng~1, WANG Shuang-ji~2, HU Ke~2, QIAO Guo-wen~1, FANG Dong-heng~1 (1. College of Environment and Civil Engineering, Chengdu University of Technology,Chengdu 610059,China 2. Anhui High Way Exploration Design Institute, Hefei, China) 《地球科学进展》 CAS CSCD 2004年第S1期292-295,共4页
The Taipinghu Bridge is an important engineering construction, and the safety of rock mass of its foundation is very crucial. This article adopts FLAC 3D to analysis the geologic model. The simulating process shows th... The Taipinghu Bridge is an important engineering construction, and the safety of rock mass of its foundation is very crucial. This article adopts FLAC 3D to analysis the geologic model. The simulating process shows that no mater the excavating process or the loading process the rock mass are safe. The modeling and analyzing process can be used for reference. 展开更多
关键词 FLAC 3D Numerical simulation Engineering bridge foundation
下载PDF
Study on the Safety of the Foundation Rock Masses in the Tangkou Bank of the Taipinghu Bridge
15
作者 FANG Dong-heng~1, DUAN Hai-peng~(1,2), WANG Yun-sheng~1 WANG Shuang-ji~2, HU Ke~2, QIAO Guo-wen~1 (1. Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059,China 2. Anhui Highway Exploration Design Institute, Hefei 230041, China) 《地球科学进展》 CAS CSCD 2004年第S1期329-332,共4页
The Taipinghu Bridge is an important project, and the safety of rock masses of its foundation is very crucial. This article analyzes the potential causes of the deformation of the rock masses of the bridge foundation,... The Taipinghu Bridge is an important project, and the safety of rock masses of its foundation is very crucial. This article analyzes the potential causes of the deformation of the rock masses of the bridge foundation, and uses the Fast Lagrangian Analysis of Continua to analyze the geologic model. The simulating process shows that no mater in the excavating process or in the loading process the rock masses are suit for the engineering. The modeling and analyzing process can be used for reference. 展开更多
关键词 FLAC3D Numerical simulation ENGINEERING bridge foundation
下载PDF
Parameter analysis of composite pile foundation in bridge foundation
16
作者 LI Guangxing WANG Rusheng +1 位作者 WANG Lei WANG Jinsong 《Global Geology》 2012年第1期42-47,共6页
In the current theory of bridge foundation design,all of the loads above the cap are loaded by the pile,and the bearing capacity of the soil among piles is not taken into account.In order to analyze the bearing capaci... In the current theory of bridge foundation design,all of the loads above the cap are loaded by the pile,and the bearing capacity of the soil among piles is not taken into account.In order to analyze the bearing capacity of the soil among piles in bridge pile foundation,a model of pile foundation is established based on a bridge foundation which is under construction,and by the finite element analysis software ANSYS.According to the results of finite element analysis(FEA)and current bridge foundation design theory,a feasible composite pile foundation which can be applied in the design of bridge foundation,is recommended.Additionally,a number of modifications are made to the original design.It was confirmed that these modifications derived from numerical simulations can improve the performance of the foundation. 展开更多
关键词 composite pile foundation bridge foundation finite element simulation analysis
下载PDF
Time-dependent deviation of bridge pile foundations caused by adjacent large-area surcharge loads in soft soils and its preventive measures
17
作者 Shuanglong LI Limin WEI +4 位作者 Jingtai NIU Zhiping DENG Bangbin WU Wuwen QIAN Feifei HE 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第2期184-201,共18页
Time-dependent characteristics(TDCs)have been neglected in most previous studies investigating the deviation mechanisms of bridge pile foundations and evaluating the effectiveness of preventive measures.In this study,... Time-dependent characteristics(TDCs)have been neglected in most previous studies investigating the deviation mechanisms of bridge pile foundations and evaluating the effectiveness of preventive measures.In this study,the stress-strain-time characteristics of soft soils were illustrated by consolidation-creep tests based on a typical engineering case.An extended Koppejan model was developed and then embedded in a finite element(FE)model via a user-material subroutine(UMAT).Based on the validated FE model,the time-dependent deformation mechanism of the pile foundation was revealed,and the preventive effect of applying micropiles and stress-release holes to control the deviation was investigated.The results show that the calculated maximum lateral displacement of the cap differs from the measured one by 6.5%,indicating that the derived extended Koppejan model reproduced the deviation process of the bridge cap-pile foundation with time.The additional load acting on the pile side caused by soil lateral deformation was mainly concentrated within the soft soil layer and increased with the increase in load duration.Compared with t=3 d(where t is surcharge time),the maximum lateral additional pressure acting on Pile 2#increased by approximately 47.0%at t=224 d.For bridge pile foundation deviation in deep soft soils,stress-release holes can provide better prevention compared to micropiles and are therefore recommended. 展开更多
关键词 bridge pile foundation surcharge load soft soil time-dependent deformation interaction mechanism preventive measure
原文传递
Numerical simulation and analysis of the pile underpinning technology used in shield tunnel crossings on bridge pile foundations 被引量:9
18
作者 Zheng Li Ziquan Chen +2 位作者 Lin Wang Zhikai Zeng Dongming Gu 《Underground Space》 SCIE EI 2021年第4期396-408,共13页
Currently,the pile foundation underpinning technology is widely used when underground transportation infrastructure passes through existing buildings or structures in urban areas.This study aims to investigate stress ... Currently,the pile foundation underpinning technology is widely used when underground transportation infrastructure passes through existing buildings or structures in urban areas.This study aims to investigate stress transfer mechanisms in pile foundations during an underpinning process as well as the influence of shield tunnel construction on pile stability.To this end,the pile foundation underpinning technology used in China’s Shenzhen Metro Line 10 crossing through the bridge pile foundation group of the Guangzhou-Shenzhen highway was analyzed in detailed.The refined numerical simulation of the pile foundation underpinning and shield tunnel construction processes were conducted using the fast Lagrangian analysis of continua in 3 dimensions(FLAC3D)software.The results demonstrate that after the pile foundation underpinned,the previous bridge load system of bridge panel→pile foundation→bearing soil would transform into a bridge panel→existing pile foundation→new underpinning pile→deep bearing soil stratum structure.The overlying load on the underpinned pile could be effectively transferred to a new underpinning pile.In the process of underpinning and tunnel excavation,the settlement and deformation of the foundation can improve the tip resistance and shaft friction of piles,which in turn,can reduce the maximum principal stress in the pile foundation group.The deformation of the bridge pile foundation is mainly caused by ground loss and excavation disturbance generated during shield tunneling as the settlement induced by pile foundation underpinning accounts for approximately 20%-30% of the total settlement.The reduction effects of settlement deformation,lateral displacement,and principal stress are mainly manifested in underpinning piles,while the non-underpinning pile exhibits minimal variation.Meanwhile,the deformation of the segment lining structure of the shield tunnel primarily occurs near the underpinning area of the pile foundation,and it is mainly settlement deformation with a small horizontal displacement. 展开更多
关键词 bridge pile foundation Shield tunnel Pile underpinning technology Numerical simulation
原文传递
The behavior of a rectangular closed diaphragm wall when used as a bridge foundation 被引量:14
19
作者 Qiangong CHENG Jiujiang WU +1 位作者 Zhang SONG Hua WEN 《Frontiers of Structural and Civil Engineering》 SCIE EI 2012年第4期398-420,共23页
The rectangular closed diaphragm(RCD)wall is a new type of bridge foundation.Compared to barrette foundation,measuring the performance of RCD walls is relatively complicated because of their incorporation of a soil co... The rectangular closed diaphragm(RCD)wall is a new type of bridge foundation.Compared to barrette foundation,measuring the performance of RCD walls is relatively complicated because of their incorporation of a soil core.Using the FLAC3D software,this paper investigates the deformation properties,soil resistance and skin friction of a laterally loaded RCD wall as well as the settlement,axial force and load-sharing ratio of a vertically loaded RCD wall.Special attention is given to the analysis of factors that influence the performance of the soil core.It was found that under lateral loading,the RCD wall behaves as an end-bearing friction wall during the entire loading process.The relative displacement between the wall body and the soil core primarily occurs below the rotation point,and the horizontal displacement of the soil core is greater than that of the wall body.Under vertical loading,the degree of inner skin friction around the bottom of the soil core and the proportion of the loading supported by the soil core increase with increased cross-section size.The wall depth is directly proportional to the loading supported by the outer skin friction and the tip resistance of the wall body and is inversely proportional to the loading borne by the soil core. 展开更多
关键词 diaphragm wall soil core bridge foundation FLAC3D bearing behavior
原文传递
Influencing factors and control measures of excavation on adjacent bridge foundation based on analytic hierarchy process and finite element method 被引量:6
20
作者 Shuangxi FENG Huayang LEI +2 位作者 Yongfeng WAN Haiyan JIN Jun HAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第2期461-477,共17页
Many uncertain factors in the excavation process may lead to excessive lateral displacement or overlimited internal force of the piles,as well as inordinate settlement of soil surrounding the existing bridge foundatio... Many uncertain factors in the excavation process may lead to excessive lateral displacement or overlimited internal force of the piles,as well as inordinate settlement of soil surrounding the existing bridge foundation.Safety control is pivotal to ensuring the safety of adjacent structures.In this paper,an innovative method is proposed that combines an analytic hierarchy process(AHP)with a finite element method(FEM)to reveal the potential impact risk of uncertain factors on the surrounding environment.The AHP was adopted to determine key influencing factors based on the weight of each influencing factor.The FEM was used to quantify the impact of the key influencing factors on the surrounding environment.In terms of the AHP,the index system of uncertain factors was established based on an engineering investigation.A matrix comparing the lower index layer to the upper index layer,and the weight of each influencing factor,were calculated.It was found that the excavation depth and the distance between the foundation pit and the bridge foundation were fundamental factors.For the FEM,the FE baseline model was calibrated based on the case of no bridge surrounding the foundation pit.The consistency between the monitoring data and the numerical simulation data for a ground settlement was analyzed.FE simulations were then conducted to quantitatively analyze the degree of influence of the key influencing factors on the bridge foundation.Furthermore,the lateral displacement of the bridge pile foundation,the internal force of the piles,and the settlement of the soil surrounding the pile foundation were emphatically analyzed.The most hazardous construction condition was also determined.Finally,two safety control measures for increasing the numbers of support levels and the rooted depths of the enclosure structure were suggested.A novel method for combining AHP with FEM can be used to determine the key influencing aspects among many uncertain factors during a construction,which can provide some beneficial references for engineering design and construction. 展开更多
关键词 deep foundation pit excavation adjacent bridge foundation influencing factors analytic hierarchy process finite element
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部