An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expans...An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expansion joints; shear key failure; and damage of the expansion joint due to the slide-induced large relative displacement between the bottom of the girder and the top of the laminated-rubber bearing. This slide, however, can actually act as a form of isolation for the substructure, and as a result, the piers and foundation of most of the bridges on state route 213 suffered minor damage. The exception was the Baihua Bridge, which suffered severe damage. Corresponding seismic design recommendations are presented based on this investigation.展开更多
Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.Firs...Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.First,the effects of temperature on the main girder spatial position coordinates were analyzed from the transverse,longitudinal and vertical directions of bridge,and the correlation regression models were built between temperature and the position coordinates of main girder in the longitudinal and vertical directions;then the alarming indices of coordinate residuals were conducted,and the mean-value control chart was applied to making statistical pattern identification for abnormal changes of girder dynamic coordinates;and finally,the structural damage alarming method of main girder was established.Analysis results show that temperature has remarkable correlation with position coordinates in the longitudinal and vertical directions of bridge,and has weak correlation with the transverse coordinates.The 3%abnormal change of the longitudinal coordinates and 5%abnormal change of the vertical ones caused by structural damage are respectively identified by the mean-value control chart method based on GPS dynamic monitoring data and hence the structural abnormalities state identification and damage alarming for main girder of long-span suspension bridge can be realized in multiple directions.展开更多
The most important method of understanding liquefaction-induced engineering failures comes from the investigation and analysis of earthquake damage.In May 2021,the Maduo M_(s)7.4 earthquake occurred on the Tibetan Pla...The most important method of understanding liquefaction-induced engineering failures comes from the investigation and analysis of earthquake damage.In May 2021,the Maduo M_(s)7.4 earthquake occurred on the Tibetan Plateau of China.The most representative engineering disaster caused by this earthquake was bridge damage on liquefied sites.In this study,the mutual relationships between the anti-liquefaction pre-design situation,the ground motion intensity,the site liquefaction severity,and the bridge damage state for this earthquake were systematically analyzed for typical bridge damage on the liquefied sites.Using field survey data and the current Chinese industry code,simulations of the liquefaction scenarios at typical bridge sites were performed for the pre-design seismic ground motion before the earthquake and the seismic ground motion during the earthquake.By combining these results with post-earthquake investigation results,the reason for the serious bridge damage resulting from this earthquake is revealed,and the necessary conditions for avoiding serious seismic damage to bridges built in liquefiable sites is presented.展开更多
A comparative study of selected bridge damage due to the Wenchuan, Northridge, Loma Prieta and San Fernando earthquakes is described in this paper. Typical ground motion effects considered include large ground fault d...A comparative study of selected bridge damage due to the Wenchuan, Northridge, Loma Prieta and San Fernando earthquakes is described in this paper. Typical ground motion effects considered include large ground fault displacement, liquefaction, landslide, and strong ground shaking. Issues related to falling spans, inadequate detailing for structural ductility and complex bridge configurations are discussed within the context of the recent seismic design codes of China and the US. A significant lesson learned from the Great Wenchuan earthquake, far beyond the opportunities to improve the seismic design provisions for bridges, is articulated.展开更多
In this paper, we present a method for simultaneously identifying the vehicular parameters and the structural damage of bridges. By using the dynamic response data of bridge in coupled vibration state and the algorith...In this paper, we present a method for simultaneously identifying the vehicular parameters and the structural damage of bridges. By using the dynamic response data of bridge in coupled vibration state and the algorithm for the inverse problem, the vehicle-bridge coupling model is built through combining the motion equations of both vehicle and the bridge based on their interaction force relationship at contact point. Load shape function method and Newmark iterative method are used to solve the vibration response of the coupled system. Penalty function method and regularization method are interchangeable in the process until the error is less than the allowable value. The proposed method is applied on a single-span girders bridge, and the recognition results verify the feasibility, high accuracy and robustness of the method.展开更多
基金National Natural Science Foundation Under Grant No.50578118
文摘An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expansion joints; shear key failure; and damage of the expansion joint due to the slide-induced large relative displacement between the bottom of the girder and the top of the laminated-rubber bearing. This slide, however, can actually act as a form of isolation for the substructure, and as a result, the piers and foundation of most of the bridges on state route 213 suffered minor damage. The exception was the Baihua Bridge, which suffered severe damage. Corresponding seismic design recommendations are presented based on this investigation.
基金Project(51078080)supported by the National Natural Science Foundation of ChinaProject(20130969010)supported by Aeronautical Science Foundation of China+1 种基金Project(2011Y03-6)supported by Traffic Transportation Technology Project of Jiangsu Province,ChinaProject(BK2012562)supported by the Natural Science Foundation of Jiangsu Province,China
文摘Structure damage identification and alarming of long-span bridge were conducted with three-dimensional dynamic displacement data collected by GPS subsystem of health monitoring system on Runyang Suspension Bridge.First,the effects of temperature on the main girder spatial position coordinates were analyzed from the transverse,longitudinal and vertical directions of bridge,and the correlation regression models were built between temperature and the position coordinates of main girder in the longitudinal and vertical directions;then the alarming indices of coordinate residuals were conducted,and the mean-value control chart was applied to making statistical pattern identification for abnormal changes of girder dynamic coordinates;and finally,the structural damage alarming method of main girder was established.Analysis results show that temperature has remarkable correlation with position coordinates in the longitudinal and vertical directions of bridge,and has weak correlation with the transverse coordinates.The 3%abnormal change of the longitudinal coordinates and 5%abnormal change of the vertical ones caused by structural damage are respectively identified by the mean-value control chart method based on GPS dynamic monitoring data and hence the structural abnormalities state identification and damage alarming for main girder of long-span suspension bridge can be realized in multiple directions.
基金Natural Science Foundation of Heilongjiang Province under Grant No.ZD2019E009Key Project of National Natural Science Foundation of China under Grant No.U1939209。
文摘The most important method of understanding liquefaction-induced engineering failures comes from the investigation and analysis of earthquake damage.In May 2021,the Maduo M_(s)7.4 earthquake occurred on the Tibetan Plateau of China.The most representative engineering disaster caused by this earthquake was bridge damage on liquefied sites.In this study,the mutual relationships between the anti-liquefaction pre-design situation,the ground motion intensity,the site liquefaction severity,and the bridge damage state for this earthquake were systematically analyzed for typical bridge damage on the liquefied sites.Using field survey data and the current Chinese industry code,simulations of the liquefaction scenarios at typical bridge sites were performed for the pre-design seismic ground motion before the earthquake and the seismic ground motion during the earthquake.By combining these results with post-earthquake investigation results,the reason for the serious bridge damage resulting from this earthquake is revealed,and the necessary conditions for avoiding serious seismic damage to bridges built in liquefiable sites is presented.
文摘A comparative study of selected bridge damage due to the Wenchuan, Northridge, Loma Prieta and San Fernando earthquakes is described in this paper. Typical ground motion effects considered include large ground fault displacement, liquefaction, landslide, and strong ground shaking. Issues related to falling spans, inadequate detailing for structural ductility and complex bridge configurations are discussed within the context of the recent seismic design codes of China and the US. A significant lesson learned from the Great Wenchuan earthquake, far beyond the opportunities to improve the seismic design provisions for bridges, is articulated.
基金Supported by the National Natural Science Foundation of China(41402271)Guizhou Science and Technology Cooperation Project(LH[2016]7043)Young Science and Technology Talents Growth Project of Guizhou Provincial Department of Education(KY-[2016]-282)
文摘In this paper, we present a method for simultaneously identifying the vehicular parameters and the structural damage of bridges. By using the dynamic response data of bridge in coupled vibration state and the algorithm for the inverse problem, the vehicle-bridge coupling model is built through combining the motion equations of both vehicle and the bridge based on their interaction force relationship at contact point. Load shape function method and Newmark iterative method are used to solve the vibration response of the coupled system. Penalty function method and regularization method are interchangeable in the process until the error is less than the allowable value. The proposed method is applied on a single-span girders bridge, and the recognition results verify the feasibility, high accuracy and robustness of the method.