Timely identification and tracking of abnormal hens in stacked cages are of great significance for precision treatment and the elimination of sick individuals.The head features of the caged-hens are used to overcome o...Timely identification and tracking of abnormal hens in stacked cages are of great significance for precision treatment and the elimination of sick individuals.The head features of the caged-hens are used to overcome observation difficulties caused by the cage and feathers blocking,but it is still hard to identify similar head states.To solve this problem,the fine-grained detection of caged-hens head states was developed using adaptive Brightness Adjustment in combination with Convolutional Neural Networks(FBA-CNN).Grid Region-based CNN(R-CNN),a convolution neural network(CNN),was optimized with the Squeeze-and-Excitation(SE)and Depthwise Over-parameterized Convolutional(DO-Conv)to detect layer heads from cages and to accurately cut them as single-head images.The brightness of each single-head image was adjusted adaptively and classified through the deep convolution neural network based on SE-Resnet50.Finally,we returned to the original image to realize multi-target detection with coordinate mapping.The results showed that the AP@0.5 of layer head detection using the optimized Grid R-CNN was 0.947,the accuracy of classification with SE-Resnet50 was 0.749,the F1 score was 0.637,and the mAP@0.5 of FBA-CNN was 0.846.In summary,this automated method can accurately identify different layer head states in layer cages to provide a basis for follow-up studies of abnormal behavior including dyspnea and cachexia.展开更多
基金This work was financially supported by the Jiangsu Provincial Key Research and Development Program(Grant No.BE2019382,No.BE2020378).
文摘Timely identification and tracking of abnormal hens in stacked cages are of great significance for precision treatment and the elimination of sick individuals.The head features of the caged-hens are used to overcome observation difficulties caused by the cage and feathers blocking,but it is still hard to identify similar head states.To solve this problem,the fine-grained detection of caged-hens head states was developed using adaptive Brightness Adjustment in combination with Convolutional Neural Networks(FBA-CNN).Grid Region-based CNN(R-CNN),a convolution neural network(CNN),was optimized with the Squeeze-and-Excitation(SE)and Depthwise Over-parameterized Convolutional(DO-Conv)to detect layer heads from cages and to accurately cut them as single-head images.The brightness of each single-head image was adjusted adaptively and classified through the deep convolution neural network based on SE-Resnet50.Finally,we returned to the original image to realize multi-target detection with coordinate mapping.The results showed that the AP@0.5 of layer head detection using the optimized Grid R-CNN was 0.947,the accuracy of classification with SE-Resnet50 was 0.749,the F1 score was 0.637,and the mAP@0.5 of FBA-CNN was 0.846.In summary,this automated method can accurately identify different layer head states in layer cages to provide a basis for follow-up studies of abnormal behavior including dyspnea and cachexia.