期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fine-grained detection of caged-hen head states using adaptive Brightness Adjustment in combination with Convolutional Neural Networks
1
作者 Jia Chen Qi’an Ding +2 位作者 Wen Yao Mingxia Shen Longshen Liu 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第3期208-216,共9页
Timely identification and tracking of abnormal hens in stacked cages are of great significance for precision treatment and the elimination of sick individuals.The head features of the caged-hens are used to overcome o... Timely identification and tracking of abnormal hens in stacked cages are of great significance for precision treatment and the elimination of sick individuals.The head features of the caged-hens are used to overcome observation difficulties caused by the cage and feathers blocking,but it is still hard to identify similar head states.To solve this problem,the fine-grained detection of caged-hens head states was developed using adaptive Brightness Adjustment in combination with Convolutional Neural Networks(FBA-CNN).Grid Region-based CNN(R-CNN),a convolution neural network(CNN),was optimized with the Squeeze-and-Excitation(SE)and Depthwise Over-parameterized Convolutional(DO-Conv)to detect layer heads from cages and to accurately cut them as single-head images.The brightness of each single-head image was adjusted adaptively and classified through the deep convolution neural network based on SE-Resnet50.Finally,we returned to the original image to realize multi-target detection with coordinate mapping.The results showed that the AP@0.5 of layer head detection using the optimized Grid R-CNN was 0.947,the accuracy of classification with SE-Resnet50 was 0.749,the F1 score was 0.637,and the mAP@0.5 of FBA-CNN was 0.846.In summary,this automated method can accurately identify different layer head states in layer cages to provide a basis for follow-up studies of abnormal behavior including dyspnea and cachexia. 展开更多
关键词 Grid R-CNN squeeze-and-excitation Depthwise Over-parameterized Convolutional adaptive brightness adjustment fine-grained detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部