Twenty-five tree species indigenous to Guangdong Province were chosen in this study to portray their distribution patterns in relation to environmental factors. Both data of species distribution and environmental fact...Twenty-five tree species indigenous to Guangdong Province were chosen in this study to portray their distribution patterns in relation to environmental factors. Both data of species distribution and environmental factors were tabulated based on a digitized map of Guangdong Province gridded at 0.5° latitude × 0.5° longitude. Grid-based diversity was mapped using DMAP, a distribution mapping program, and horizontal patterns were assessed using Kruskal-Wallis tests. The diversity center of the indige- nous tree species under study is located north of 23° N. These tree species exhibit significant latitudinal variation (P = 0.007 4), but no significant longitudinal difference (P = 0.052 2). Non-metric Multidimensional Scaling (NMS) identified five different ecological species groups, while Canonical Correspondence Analysis (CCA) showed the distribution of tree species along each of the five envi- ronmental gradients. An understanding of the environmental correlates of distribution patterns has great implication for the introduc- tion of the indigenous tree species for afforestation.展开更多
Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemi...Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemical stability is still little known,especially with the compounding effects of tree species diversity.An experimental field manipulation was established in subtropical plantations of southern China to explore the impacts of tree species richness(i.e.,one,two,four and six tree species)and with/without N-fixing trees on SOC chemical stability,as indicated by the ratio of easily oxidized organic carbon to SOC(EOC/SOC).Plant-derived C components in terms of hydrolysable plant lipids and lignin phenols were isolated from soils for evaluating their relative contributions to SOC chemical stability.The results showed that N-fixing tree species rather than tree species richness had a significant effect on EOC/SOC.Hydrolysable plant lipids and lignin phenols were negatively correlated with EOC/SOC,while hydrolysable plant lipids contributed more to EOC/SOC than lignin phenols,especially in the occurrence of N-fixing trees.The presence of N-fixing tree species led to an increase in soil N availability and a decrease in fungal abundance,promoting the selective retention of certain key components of hydrolysable plant lipids,thus enhancing SOC chemical stability.These findings underpin the crucial role of N-fixing trees in shaping SOC chemical stability,and therefore,preferential selection of N-fixing tree species in mixed plantations is an appropriate silvicultural strategy to improve SOC chemical stability in subtropical plantations.展开更多
Regeneration status of tree species along elevation gradient in temperate hill forest was not understood greatly.Present research examined the tree diversity and its regeneration patterns along an elevation gradient i...Regeneration status of tree species along elevation gradient in temperate hill forest was not understood greatly.Present research examined the tree diversity and its regeneration patterns along an elevation gradient in temperate hill forest,central Nepal.Data were collected from 300 sample plots within vertical elevation bands of 10,ranging from 1365 to 2450 m asl.A random sampling method was used for data collection in three seasons,winter,pre-monsoon and post monsoon seasons.Diameter at breast height(DBH)was used to broadly categorize the plant individual into trees,saplings and seedlings.The tree species richness ranged from 12 to 25 with density of 350 to 1200 individuals per hectare.Species richness of tree and sapling showed statistically significant unimodal pattern,which peaked at mid-elevation.Elevation showed a strong and positive linear correlation with the seedling density(Deviance=0.99,p<0.001)and a significant hump-shaped relationship with sapling density(Deviance=0.95,p<0.001).Similarly,elevations showed a statistically significant negative hump-shaped relationship with all trees,saplings and seedling stages(Deviances=0.89,0.87 and 0.57).The highest values of the Shannon-Wiener index and the lowest value of the Simpson index were found at mid-elevation for all growth forms.Nearly 92%of tree species were found at regenerating stage;49%in a good renewal regeneration status,32%in fair renewal regeneration,and 11%at a poor regenerating condition.Nevertheless,4%of tree species were reported as non-regenerating stages and 4%were newly introduced species.Hence,the regeneration status of the study area was considered fairly well since sapling(78.5%)>seedling(10.6%)≤mature(10.9%).Among tested environmental variables,elevation and annual mean rainfall were the most influential factors in the regeneration of tree species.展开更多
Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate cl...Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.展开更多
The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilitie...The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilities of common trees in BKF to extreme climates are poorly understood.Here we used dendrochronological meth-ods to assess radial growth of seven main tree species(Pinus koraiensis,Picea jezoensis,Abies nephrolepis,Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Ulmus davidiana)in an old-growth BKF in response to climate changes in the Xiaoxing’an Mountains and to improve predictions of changes in the tree species compo-sition.Temperature in most months and winter precipita-tion significantly negatively affected growth of P.jezoensis and A.nephrolepis,but positively impacted growth of P.koraiensis and the broadleaf species,especially F.mandshu-rica and U.davidiana.Precipitation and relative humidity in June significantly positively impacted the growth of most tree species.The positive effect of the temperature during the previous non-growing season(PNG)on growth of F.mandshurica and Q.mongolica strengthened significantly with rapid warming around 1981,while the impact of PNG temperature on the growth of P.jezoensis and A.nephrolepis changed from significantly negative to weakly negative or positive at this time.The negative response of radial growth of P.jezoensis and A.nephrolepis to precipitation during the growing season gradually weakened,and the negative response to PNG precipitation was enhanced.Among the studied species,P.koraiensis was the most resistant to drought,and U.davidiana recovered the best after extreme drought.Ulmus davidiana,P.jezoensis and A.nephrolepis were more resistant to extreme cold than the other species.Climate warming generally exacerbated the opposite growth patterns of conifer(decline)and broadleaf(increase)spe-cies.Deciduous broadleaf tree species in the old-growth BKF probably will gradually become dominant as warming continues.Species-specific growth-climate relationships should be considered in future models of biogeochemical cycles and in forestry management practices.展开更多
Tree allometry plays a crucial role in tree survival,stability,and timber quantity and quality of mixed-species plantations.However,the responses of tree allometry to resource utilisation within the framework of inter...Tree allometry plays a crucial role in tree survival,stability,and timber quantity and quality of mixed-species plantations.However,the responses of tree allometry to resource utilisation within the framework of interspecific competition and complementarity remain poorly understood.Taking into consideration strong-and weakspace competition(SC and WC),as well as N_(2)-fixing and non-N_(2)-fixing tree species(FN and nFN),a mixedspecies planting trial was conducted for Betula alnoides,a pioneer tree species,which was separately mixed with Acacia melanoxylon(SC+FN),Erythrophleum fordii(WC+FN),Eucalyptus cloeziana(SC+nFN)and Pinus kesiya var.langbianensis(WC+nFN)in southern China.Six years after planting,tree growth,total nitrogen(N)and carbon(C)contents,and the natural abundances of^(15)N and^(13)C in the leaves were measured for each species,and the mycorrhizal colonisation rates of B.alnoides were investigated under each treatment.Allometric variations and their relationships with space competition and nutrient-related factors were analyzed.The results showed a consistent effect of space competition on the height-diameter relationship of B.alnoides in mixtures with FN or nFN.The tree height growth of B.alnoides was significantly promoted under high space competition,and growth in diameter at breast height(DBH),tree height and crown size were all expedited in mixtures with FN.The symbiotic relationship between ectomycorrhizal fungi and B.alnoides was significantly influenced by both space competition and N_(2) fixation by the accompanying tree species,whereas such significant effects were absent for arbuscular mycorrhizal fungi.Furthermore,high space competition significantly decreased the water use efficiency(WUE)of B.alnoides,and its N use efficiency(NUE)was much lower in the FN mixtures.Structural equation modeling further demonstrated that the stem allometry of B.alnoides was affected by its NUE and WUE via changes in its height growth,and crown allometry was influenced by the mycorrhizal symbiotic relationship.Our findings provide new insights into the mechanisms driving tree allometric responses to above-and belowground resource competition and complementarity in mixed-species plantations,which are instructive for the establishment of mixed-species plantations.展开更多
As primary and secondary forests are being replaced by plantations across the globe,the soil macrofauna community structure is also affected,but little is known about the impact of mixed culture plantations compared w...As primary and secondary forests are being replaced by plantations across the globe,the soil macrofauna community structure is also affected,but little is known about the impact of mixed culture plantations compared with monocultures on the soil macrofauna.To determine the impact of forest conversion on soil macrofauna,we surveyed the soil macrofauna in two broad-leaved and three coniferous monoculture stands and four coniferous-broadleaved mixed stands,and in adjacent reserved secondary stands as a reference.Soil macro fauna community composition was significant affected by forest type,season and their interaction(P<0.05).The abundance,taxa richness and diversity of soil macro fauna changed to different degrees depending on the plantation type.Broadleaved monoculture stands and secondary stands had similar macrofauna abundance and taxa richness,but values were lower in coniferous stands than in secondary stands.The Shannon index for macrofauna in coniferous stands was also the lowest,but the Pielou index did not differ between forest types.The negative effects of the conifer monoculture on soil macro fauna were not present in the mixed stands with broad-leaved trees.Forest conversion impacted soil properties;soil moisture,NO_(3)^(-),and pH were significant drivers of soil macrofauna community structure.The impact of forest conversion on soil macrofauna was closely dependent on tree species composition and diversity.The macro fauna community structure in the broadleaved and the mixed stands were relatively similar to that in the natural forest,and thus recommended for forest conversion in the study area.展开更多
Although airborne hyperspectral data with detailed spatial and spectral information has demonstrated significant potential for tree species classification,it has not been widely used over large areas.A comprehensive p...Although airborne hyperspectral data with detailed spatial and spectral information has demonstrated significant potential for tree species classification,it has not been widely used over large areas.A comprehensive process based on multi-flightline airborne hyperspectral data is lacking over large,forested areas influenced by both the effects of bidirectional reflectance distribution function(BRDF)and cloud shadow contamination.In this study,hyperspectral data were collected over the Mengjiagang Forest Farm in Northeast China in the summer of 2017 using the Chinese Academy of Forestry's LiDAR,CCD,and hyperspectral systems(CAF-LiCHy).After BRDF correction and cloud shadow detection processing,a tree species classification workflow was developed for sunlit and cloud-shaded forest areas with input features of minimum noise fraction reduced bands,spectral vegetation indices,and texture information.Results indicate that BRDF-corrected sunlit hyperspectral data can provide a stable and high classification accuracy based on representative training data.Cloud-shaded pixels also have good spectral separability for species classification.The red-edge spectral information and ratio-based spectral indices with high importance scores are recommended as input features for species classification under varying light conditions.According to the classification accuracies through field survey data at multiple spatial scales,it was found that species classification within an extensive forest area using airborne hyperspectral data under various illuminations can be successfully carried out using the effective radiometric consistency process and feature selection strategy.展开更多
Subcanopy tree species are an important component of temperate secondary forests.However,their biomass equations are rarely reported,which forms a“vertical gap”between canopy tree species and understory shrub specie...Subcanopy tree species are an important component of temperate secondary forests.However,their biomass equations are rarely reported,which forms a“vertical gap”between canopy tree species and understory shrub species.In this study,we destructively sampled six common subcanopy species(Syringa reticulate var.amurensis(Rupr.)Pringle,Padus racemosa(Lam.)Gilib.,Acer ginnala Maxim.,Malus baccata(Linn.)Borkh.,Rhamnus davurica Pall.,and Maackia amurensis Rupr.et Maxim.)to establish biomass equations in a temperate forest of Northeast China.The mixed-species and species-specifi c biomass allometric equations were well fi tted against diameter at breast height(DBH).Adding tree height(H)as the second predictor increased the R^(2)of the models compared with the DBH-only models by–1%to+3%.The R^(2)of DBH-only and DBH-H equations for the total biomass of mixed-species were 0.985 and 0.986,respectively.On average,the biomass allocation proportions for the six species were in the order of stem(45.5%)>branch(30.1%)>belowground(19.5%)>foliage(4.9%),with a mean root:shoot ratio of 0.24.Biomass allocation to each specifi c component diff ered among species,which aff ected the performance of the mixed-species model for particular biomass component.When estimating the biomass of subcanopy species using the equations for canopy species(e.g.,Betula platyphylla Suk.,Ulmus davidiana var.japonica(Rehd.)Nakai,and Acer mono Maxim.),the errors in individual biomass estimation increased with tree size(up to 68.8%at 30 cm DBH),and the errors in stand biomass estimation(up to 19.2%)increased with increasing percentage of basal area shared by subcanopy species.The errors caused by selecting such inappropriate models could be removed by multiplying adjustment factors,which were usually power functions of DBH for biomass components.These results provide methodological support for accurate biomass estimation in temperate China and useful guidelines for biomass estimation for subcanopy species in other regions,which can help to improve estimates of forest biomass and carbon stocks.展开更多
The underlying mechanisms of the relationships between tree species and the soil micro-food web in forest ecosystems remain uncertain,primarily ascribed to an insufficient understanding on how tree functional traits d...The underlying mechanisms of the relationships between tree species and the soil micro-food web in forest ecosystems remain uncertain,primarily ascribed to an insufficient understanding on how tree functional traits drive soil nematode communities,including in subtropical forests.We investigated the impacts of seven subtropical tree species(evergreen:Pinus massoniana,Mytilaria laosensis,Ilex chinensis,Michelia macclurei;and deciduous:Liquidambar formosana,Quercus acutissima,and Betula luminifera)on the soil nematode communities.We found that the abundance of soil nematodes was not affected by mycorrhizal types,but it was around 83%higher under the deciduous trees than the evergreen trees,indicating the importance of leaf phenology to the abundance of soil nematodes.Nonetheless,both the evergreen and the arbuscular mycorrhizal trees increased soil nematode diversity,resulting from changes in root traits and soil properties.Furthermore,root traits(root C,root N,and root C:N ratio),and soil properties(total C,total N,moisture content,and bulk density)were the best predictors of the community composition of soil nematodes,indicating a key role of resource quality and soil microhabitat in regulating soil nematodes.In contrast,the ectomycorrhizal trees had lower plant parasite and Wasilewska indices,and evenness,whereas the evergreen trees slightly improved the evenness of soil nematodes.This study suggests that tree species affect the soil food web through changes in soil conditions and plant functional traits in subtropical forests.展开更多
Background: Vegetation distribution maps are of great significance for nature protection and management. In diverse tropical forests, accurate spatial mapping of vegetation types is challenging;the high species divers...Background: Vegetation distribution maps are of great significance for nature protection and management. In diverse tropical forests, accurate spatial mapping of vegetation types is challenging;the high species diversity and abundance of rare species challenge classification concepts, while remote sensing signals may not vary systematically with species composition, complicating the technical capability for delineating vegetation types in the landscape.Methods: We used a combination of field-based compositional data and their relations to environmental variables to predict the distribution of forest types in the Wuzhishan National Natural Reserve(WNNR), Hainan Island,China, using multivariate regression trees(MRT). The MRT was based on arboreal vegetation composition in 132plots of 20 m×20 m with a regular spacing of 1 km. Apart from the MRT, non-metric multidimensional scaling(NMDS) was used to evaluate vegetation-environment relationships.Results: The MRT model worked best when using 14 key environmental variables including topography, climate,latitude and soil, although the difference with the simpler model including only topographical variables was small. The full model classified the 132 plots into 3 vegetation types, 6 formation groups, 20 formations and 65associations at different hierarchical syntaxonomic levels. This model was the basis for forest vegetation maps for the WNNR. MRT and NMDS showed that elevation was the main driving force for the distribution of vegetation types and formation groups. Climate, latitude, and soil(especially available P), together with topographic variables, all influenced the distribution of formations and associations.Conclusions: While elevation determines forest-type distributions, lower-level syntaxonomic forest classes respond to the topographic diversity typical for mountains. Apart from providing the first detailed forest vegetation map for any part of WNNR, we show how, in spite of limitations, MRT with existing environmental data can be a useful method for mapping diverse and remote tropical forests.展开更多
The development of allometric biomass models is important process in biomass estimation because the reliability of forest biomass and carbon estimations largely depends on the accuracy and precision of such models.Nat...The development of allometric biomass models is important process in biomass estimation because the reliability of forest biomass and carbon estimations largely depends on the accuracy and precision of such models.National Forest Inventories(NFI)are detailed assessments of forest resources at national and regional levels that provide valuable data for forest biomass estimation.However,the lack of biomass allometric equations for each tree species in the NFI currently hampers the estimation of national-scale forest biomass.The main objective of this study was to develop allometric biomass regression equations for each tree species in the NFI of China based on limited biomass observations.These equations optimally grouped NFI and biomass observation species according to their phylogenetic relationships.Significant phylogenetic signals demonstrated phylogenetic conservation of the crown-to-stem biomass ratio.Based on phylogenetic relationships,we grouped and matched NFI and biomass observation species into 22 categories.Allometric biomass regression models were developed for each of these 22 species categories,and the models performed successfully(R^(2)=0.97,root mean square error(RMSE)=12.9t·ha^(–1),relative RMSE=11.5%).Furthermore,we found that phylogeny-based models performed more effectively than wood density-based models.The results suggest that grouping species based on their phylogenetic relationships is a reliable approach for the development and selection of accurate allometric equations.展开更多
Tree communities contribute to maintenance of species diversity in tropical forests. Coexistence of many tree species is not without competition. Therefore, coexistence of tree species and size diversities occur seque...Tree communities contribute to maintenance of species diversity in tropical forests. Coexistence of many tree species is not without competition. Therefore, coexistence of tree species and size diversities occur sequentially or simultaneously in tropical natural forests. Understanding coexistence and competition mechanisms of tree species requires knowledge of interactions within and between species. However, many conservation efforts and strategies failed due to inability to identify and maintain functional coexistence mechanisms among tree species in the forest. Also, most trees died because of pressure on their habitats and not because of limiting growth resources. Hence, species identity, minimum distance and size of the neighbouring trees which are responsible for coexistence of competing trees in most tropical forests have not been explicitly reviewed. Therefore, this review evaluated some of the density dependent mechanisms for coexistence of tree species alpha diversity in tropical forests. Many interactive mechanisms are responsible for coexistence tree species in tropical forests. Inter- and intra-specific competitions are the most significant and both facilitate positive and negative density dependence. Therefore, switching from negative to positive density dependence may occur in some situations. Positive and negative density effects regulate species abundance and coexistence through conspecific and heterospecific structures. Aggregates of conspecific and heterospecific neighbours constitute forest spatial structure. Negative density interactions are mutually exclusive and basically ranged from effect of species identity of neighbours, distance to neighbours and tree size of the neighbours to reference trees in the community structures. Some mechanisms shorten distances for heterospecific than conspecific interactions. Conspecific structures improved survival and growth of rare tree species. Interactive mechanisms in tree community and population structures facilitate species diversity and size inequality, respectively.展开更多
Spatial distribution is fundamental for understanding species coexistence mechanisms in forest communities.Here we comprehensively explored fine-scale spatial patterns of tree species in a secondary warm-temperate dec...Spatial distribution is fundamental for understanding species coexistence mechanisms in forest communities.Here we comprehensively explored fine-scale spatial patterns of tree species in a secondary warm-temperate deciduous broad-leaved forest community in north China.Aggregated distribution patterns were predominant.Species functional traits had no significant effects on their spatial patterns.The aggregation intensity decreased with increasing DBH and abundance.The multivariate linear stepwise regression showed that abundance and maximum DBH were correlated with the aggregation intensity.Our results partially confirm that species attributes(abundance,DBH)and habitat heterogeneity may primarily contribute to spatial patterns and species coexistence in this secondary forest.展开更多
Seeds and seedlings of five broad-leaved species were separately exposed to simulated acid rain at pH values of 2.0, 3.5, 5.0, and 6.0, or to distilled water (the control). The results showed that seed germination was...Seeds and seedlings of five broad-leaved species were separately exposed to simulated acid rain at pH values of 2.0, 3.5, 5.0, and 6.0, or to distilled water (the control). The results showed that seed germination was remarkably inhibited by pH 2.0 treatment for three species. Significant foliar damage, decline in chlorophyll contents, and retardation of the seedlings growth of all the species, were observed at pH 2.0 treatment. The pH 2.0 treatment seemed to be a threshold level for inhibition of seed germination and seedling growth for all the treated species, while seedling was stimulated at pH value between 3.5 and 5.0.展开更多
Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining a...Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining activities and changing environment.The aims of the study are to investigate climate changeinduced changes of subtropical evergreen broad-leaved forests in Yunnan and identify areas of current species richness centers for conservation preparation.Stacked species distribution models were created to generate ensemble forecasting of species distributions,alpha diversity and beta diversity for Yunnan's subtropical evergreen broad-leaved forests in both current and future climate scenarios.Under stacked species distribution models in rapid climate changes scenarios,changes of water-energy dynamics may possibly reduce beta diversity and increase alpha diversity.This point provides insight for future conservation of evergreen broad-leaved forest in Yunnan,highlighting the need to fully consider the problem of vegetation homogenization caused by transformation of water-energy dynamics.展开更多
Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urge...Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urgent to conserve and restore these natural forests in China. In this paper,the tendency and rate of species diversity restoration of the evergreen broad-leaved forest in Daming Mountain has been studied.The main resultsare as follows:(a)In subtropical mid-mountain area,species diversity in degraded evergreen broad-leaved forestcan be restored. Through analyzing b diversity index of communities in different time and space,it was found that the species composition of communities tend to be the same as that in the zonal evergreen broad-leaved forest.(b)The restoration rate of evergreen broad-leaved forest was very fast.Planting Chinese fir after clear-cutting and controlled burning of the forest,178 species appeared in a 600m^2 sample area after 20 years’natural recovering.Among the sespecies,58 were tree layer and the height of community reached 18m.The survey suggested that it would take only 20 years for the degraded forest to develop into community composed of lightdemanding broad-leaved pioneer trees and min-tolerance broad-leaved trees,and it need another 40~80 years to reach the stage consisting of min-tolerance evergreen broad-leaved trees.(c)Species number increased quickly at the early stage(2-20years)during vegetation recovering process toward the climax,and decreased at the min-stage (50-60 years),then maintained a relatively stable level at the late-stage (over 150 years).展开更多
Recovery of species diversity after catastrophic disturbance was influenced by a few factors, such as intensity of disturbance, availability of propagules, and the environmental conditions, In this paper, we examined ...Recovery of species diversity after catastrophic disturbance was influenced by a few factors, such as intensity of disturbance, availability of propagules, and the environmental conditions, In this paper, we examined pattems of species development after nearly 60a succession in bumed broad-leaved Korean pine mixed forest on northem slope of ChangbaiMountain. We aasessed the recovery of plant species diversity in 3 types of forests under the contition with gradient of soil moisture. Results revealed that recovery of plant species (liversity varied greatly under different environmental conditions.Species richness of secondary forests greatly related to the site condition. Secondary birch forest on mesic site had the greatest number of plant species and the following was poplar-birch forest and larch-birch forest.Most of characteristic taxa couldbe found in birch forest after 60a succession. For larch-birch forest on hydra site, most of climax species were still not able to invade, so it had the lowest species diversity.展开更多
Selection of fire resistant tree species for the southwestern China and the planting of those species can effectively prevent large area's fire damage. In this paper the components and flammability of leaves, twi...Selection of fire resistant tree species for the southwestern China and the planting of those species can effectively prevent large area's fire damage. In this paper the components and flammability of leaves, twigs and barks of 12 tree species in the mountain area of southwestern China have been tested and analyzed in the laboratory. The test and analysis indicate the results as follows:(1) for all the tree species, the fire resistance of leaves is much weaker than that of twigs and barks, and the broad leaves are stronger than those of conifers in fire resistance. (2) Heat value, moisture, ignition point and ash content are main indexes to affect fire resistance. Heat value relates to lignose content and benzene ethanol extractive content linearly.(3) Of all the 12 tree species, Schima superba,Castanopsis hystrix, Myrica rubra have the strongest resistance to fire; Machilus pauhoi, Michelia macclurei, Mytilaria laosensis, Camellia olifera and Manglietia tenuipes are relatively strong in fire resistance, and Lithocapus thalassica, Tsoongiodendron odorum, Cunninghamia lanceolata and Pinus massoniana are weak in fire resistance.展开更多
The 16 tree species on Northeast China Transect (NECT) were analyzed from the change of geographical distribution, frequency and dominance pattern and the spatial correlation at landscape scale in 1986 and 1994. Pin...The 16 tree species on Northeast China Transect (NECT) were analyzed from the change of geographical distribution, frequency and dominance pattern and the spatial correlation at landscape scale in 1986 and 1994. Pinus koraiensis Sieb. et Zucc. and Fraxinus rhynchophylla Hemsl. had spread rapidly towards west and east, respectively. The frontier form of species had close relation with its movement. The patch size of Pinus koraiensis , Populus davidiana Dode., Phellodendron amurense Rupr., Juglans mandshurica Maxim., Fraxinus mandshurica Rupr., Betula dahurica Pall., Picea koraiensis Nakai, Abies nephrolepis Maxim. and Larix olgeusis var. koreana Nakai decreased, however, Quercus mongolica Fisch., Betula costata Trautv., Acer mono Maxim., Tilia spp., Ulmus spp., Betula platyphylla Suk. and Fraxinus rhynchophylla increased. The frequency pattern of Populus davidiana , Betula platyphylla , Fraxinus rhynchophylla and Betula dahurica changed significantly. The dominance pattern of Populus davidiana , Tilia spp., Juglans mandshurica , Betula platyphylla , Betula dahurica and Abies nephrolepis changed significantly. The spatial correlation between Quercus mongolica and Betula dahurica , Betula costata and Picea spp., Betula costata and Abies nephrolepis , Picea spp. and Abies nephrolepis declined, however, the spatial correlation between Larix spp. and Betula platyphylla , Acer mono and Ulmus spp. increased.展开更多
基金Key Research Program of Guangdong Province (Grant No. 2002C20703) and Key Research Program of Guangdong Provincial Department ofForestry (Grant No. 2002-12)
文摘Twenty-five tree species indigenous to Guangdong Province were chosen in this study to portray their distribution patterns in relation to environmental factors. Both data of species distribution and environmental factors were tabulated based on a digitized map of Guangdong Province gridded at 0.5° latitude × 0.5° longitude. Grid-based diversity was mapped using DMAP, a distribution mapping program, and horizontal patterns were assessed using Kruskal-Wallis tests. The diversity center of the indige- nous tree species under study is located north of 23° N. These tree species exhibit significant latitudinal variation (P = 0.007 4), but no significant longitudinal difference (P = 0.052 2). Non-metric Multidimensional Scaling (NMS) identified five different ecological species groups, while Canonical Correspondence Analysis (CCA) showed the distribution of tree species along each of the five envi- ronmental gradients. An understanding of the environmental correlates of distribution patterns has great implication for the introduc- tion of the indigenous tree species for afforestation.
基金supported by the National Natural Science Foundation of China(31930078,32301559)the Ministry of Science and Technology of China(2021YFD2200405,2021YFD2200402)+1 种基金Fundamental Research Funds of CAF(CAFYBB2021ZW001)the program for scientific research start-up funds of Guangdong Ocean University。
文摘Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemical stability is still little known,especially with the compounding effects of tree species diversity.An experimental field manipulation was established in subtropical plantations of southern China to explore the impacts of tree species richness(i.e.,one,two,four and six tree species)and with/without N-fixing trees on SOC chemical stability,as indicated by the ratio of easily oxidized organic carbon to SOC(EOC/SOC).Plant-derived C components in terms of hydrolysable plant lipids and lignin phenols were isolated from soils for evaluating their relative contributions to SOC chemical stability.The results showed that N-fixing tree species rather than tree species richness had a significant effect on EOC/SOC.Hydrolysable plant lipids and lignin phenols were negatively correlated with EOC/SOC,while hydrolysable plant lipids contributed more to EOC/SOC than lignin phenols,especially in the occurrence of N-fixing trees.The presence of N-fixing tree species led to an increase in soil N availability and a decrease in fungal abundance,promoting the selective retention of certain key components of hydrolysable plant lipids,thus enhancing SOC chemical stability.These findings underpin the crucial role of N-fixing trees in shaping SOC chemical stability,and therefore,preferential selection of N-fixing tree species in mixed plantations is an appropriate silvicultural strategy to improve SOC chemical stability in subtropical plantations.
基金the University grant Commission, Kathmandu Nepal for partial financial assistance (Sand T 23-2076/77)
文摘Regeneration status of tree species along elevation gradient in temperate hill forest was not understood greatly.Present research examined the tree diversity and its regeneration patterns along an elevation gradient in temperate hill forest,central Nepal.Data were collected from 300 sample plots within vertical elevation bands of 10,ranging from 1365 to 2450 m asl.A random sampling method was used for data collection in three seasons,winter,pre-monsoon and post monsoon seasons.Diameter at breast height(DBH)was used to broadly categorize the plant individual into trees,saplings and seedlings.The tree species richness ranged from 12 to 25 with density of 350 to 1200 individuals per hectare.Species richness of tree and sapling showed statistically significant unimodal pattern,which peaked at mid-elevation.Elevation showed a strong and positive linear correlation with the seedling density(Deviance=0.99,p<0.001)and a significant hump-shaped relationship with sapling density(Deviance=0.95,p<0.001).Similarly,elevations showed a statistically significant negative hump-shaped relationship with all trees,saplings and seedling stages(Deviances=0.89,0.87 and 0.57).The highest values of the Shannon-Wiener index and the lowest value of the Simpson index were found at mid-elevation for all growth forms.Nearly 92%of tree species were found at regenerating stage;49%in a good renewal regeneration status,32%in fair renewal regeneration,and 11%at a poor regenerating condition.Nevertheless,4%of tree species were reported as non-regenerating stages and 4%were newly introduced species.Hence,the regeneration status of the study area was considered fairly well since sapling(78.5%)>seedling(10.6%)≤mature(10.9%).Among tested environmental variables,elevation and annual mean rainfall were the most influential factors in the regeneration of tree species.
基金the National Natural Science Foundation of China(32260379&32371852)the Jiangxi Provincial Natural Science Foundation(20224ACB215005)
文摘Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.
基金supported by the National Natural Science Foundation of China(42107476,41877426)the Hunan Provincial Natural Science Foundation of China(2021JJ41075)+3 种基金the China Postdoctoral Science Foundation(2020M682600)the Science and Technology Innovation Program of Hunan Province(2020RC2058)the Research Foundation of the Bureau of Education in Hunan Province(20B627)China Scholarship Council(CSC,no.202206600004,to DY).
文摘The role of the temperate mixed broadleaf-Korean pine forest(BKF)in global biogeochemical cycles will depend on how the tree species community responds to climate;however,species-specific responses and vulner-abilities of common trees in BKF to extreme climates are poorly understood.Here we used dendrochronological meth-ods to assess radial growth of seven main tree species(Pinus koraiensis,Picea jezoensis,Abies nephrolepis,Fraxinus mandshurica,Phellodendron amurense,Quercus mongolica,and Ulmus davidiana)in an old-growth BKF in response to climate changes in the Xiaoxing’an Mountains and to improve predictions of changes in the tree species compo-sition.Temperature in most months and winter precipita-tion significantly negatively affected growth of P.jezoensis and A.nephrolepis,but positively impacted growth of P.koraiensis and the broadleaf species,especially F.mandshu-rica and U.davidiana.Precipitation and relative humidity in June significantly positively impacted the growth of most tree species.The positive effect of the temperature during the previous non-growing season(PNG)on growth of F.mandshurica and Q.mongolica strengthened significantly with rapid warming around 1981,while the impact of PNG temperature on the growth of P.jezoensis and A.nephrolepis changed from significantly negative to weakly negative or positive at this time.The negative response of radial growth of P.jezoensis and A.nephrolepis to precipitation during the growing season gradually weakened,and the negative response to PNG precipitation was enhanced.Among the studied species,P.koraiensis was the most resistant to drought,and U.davidiana recovered the best after extreme drought.Ulmus davidiana,P.jezoensis and A.nephrolepis were more resistant to extreme cold than the other species.Climate warming generally exacerbated the opposite growth patterns of conifer(decline)and broadleaf(increase)spe-cies.Deciduous broadleaf tree species in the old-growth BKF probably will gradually become dominant as warming continues.Species-specific growth-climate relationships should be considered in future models of biogeochemical cycles and in forestry management practices.
基金supported by National Natural Science Foundation of China (31972949)National Nonprofit Institute Research Grant of Chinese Academy of Forestry,China (CAFYBB2023MB006)。
文摘Tree allometry plays a crucial role in tree survival,stability,and timber quantity and quality of mixed-species plantations.However,the responses of tree allometry to resource utilisation within the framework of interspecific competition and complementarity remain poorly understood.Taking into consideration strong-and weakspace competition(SC and WC),as well as N_(2)-fixing and non-N_(2)-fixing tree species(FN and nFN),a mixedspecies planting trial was conducted for Betula alnoides,a pioneer tree species,which was separately mixed with Acacia melanoxylon(SC+FN),Erythrophleum fordii(WC+FN),Eucalyptus cloeziana(SC+nFN)and Pinus kesiya var.langbianensis(WC+nFN)in southern China.Six years after planting,tree growth,total nitrogen(N)and carbon(C)contents,and the natural abundances of^(15)N and^(13)C in the leaves were measured for each species,and the mycorrhizal colonisation rates of B.alnoides were investigated under each treatment.Allometric variations and their relationships with space competition and nutrient-related factors were analyzed.The results showed a consistent effect of space competition on the height-diameter relationship of B.alnoides in mixtures with FN or nFN.The tree height growth of B.alnoides was significantly promoted under high space competition,and growth in diameter at breast height(DBH),tree height and crown size were all expedited in mixtures with FN.The symbiotic relationship between ectomycorrhizal fungi and B.alnoides was significantly influenced by both space competition and N_(2) fixation by the accompanying tree species,whereas such significant effects were absent for arbuscular mycorrhizal fungi.Furthermore,high space competition significantly decreased the water use efficiency(WUE)of B.alnoides,and its N use efficiency(NUE)was much lower in the FN mixtures.Structural equation modeling further demonstrated that the stem allometry of B.alnoides was affected by its NUE and WUE via changes in its height growth,and crown allometry was influenced by the mycorrhizal symbiotic relationship.Our findings provide new insights into the mechanisms driving tree allometric responses to above-and belowground resource competition and complementarity in mixed-species plantations,which are instructive for the establishment of mixed-species plantations.
基金supported by the Fundamental Research Funds for the Central Universities (572017PZ03,2572020DR04 and 2572019CP16)。
文摘As primary and secondary forests are being replaced by plantations across the globe,the soil macrofauna community structure is also affected,but little is known about the impact of mixed culture plantations compared with monocultures on the soil macrofauna.To determine the impact of forest conversion on soil macrofauna,we surveyed the soil macrofauna in two broad-leaved and three coniferous monoculture stands and four coniferous-broadleaved mixed stands,and in adjacent reserved secondary stands as a reference.Soil macro fauna community composition was significant affected by forest type,season and their interaction(P<0.05).The abundance,taxa richness and diversity of soil macro fauna changed to different degrees depending on the plantation type.Broadleaved monoculture stands and secondary stands had similar macrofauna abundance and taxa richness,but values were lower in coniferous stands than in secondary stands.The Shannon index for macrofauna in coniferous stands was also the lowest,but the Pielou index did not differ between forest types.The negative effects of the conifer monoculture on soil macro fauna were not present in the mixed stands with broad-leaved trees.Forest conversion impacted soil properties;soil moisture,NO_(3)^(-),and pH were significant drivers of soil macrofauna community structure.The impact of forest conversion on soil macrofauna was closely dependent on tree species composition and diversity.The macro fauna community structure in the broadleaved and the mixed stands were relatively similar to that in the natural forest,and thus recommended for forest conversion in the study area.
基金supported by the National Natural Science Foundation of China (Grant No.42101403)the National Key Researchand Development Program of China (Grant No.2017YFD0600404)。
文摘Although airborne hyperspectral data with detailed spatial and spectral information has demonstrated significant potential for tree species classification,it has not been widely used over large areas.A comprehensive process based on multi-flightline airborne hyperspectral data is lacking over large,forested areas influenced by both the effects of bidirectional reflectance distribution function(BRDF)and cloud shadow contamination.In this study,hyperspectral data were collected over the Mengjiagang Forest Farm in Northeast China in the summer of 2017 using the Chinese Academy of Forestry's LiDAR,CCD,and hyperspectral systems(CAF-LiCHy).After BRDF correction and cloud shadow detection processing,a tree species classification workflow was developed for sunlit and cloud-shaded forest areas with input features of minimum noise fraction reduced bands,spectral vegetation indices,and texture information.Results indicate that BRDF-corrected sunlit hyperspectral data can provide a stable and high classification accuracy based on representative training data.Cloud-shaded pixels also have good spectral separability for species classification.The red-edge spectral information and ratio-based spectral indices with high importance scores are recommended as input features for species classification under varying light conditions.According to the classification accuracies through field survey data at multiple spatial scales,it was found that species classification within an extensive forest area using airborne hyperspectral data under various illuminations can be successfully carried out using the effective radiometric consistency process and feature selection strategy.
基金supported by the National Key Research and Development Program(2021YFD220040105)National Natural Science Foundation of China(32171765).
文摘Subcanopy tree species are an important component of temperate secondary forests.However,their biomass equations are rarely reported,which forms a“vertical gap”between canopy tree species and understory shrub species.In this study,we destructively sampled six common subcanopy species(Syringa reticulate var.amurensis(Rupr.)Pringle,Padus racemosa(Lam.)Gilib.,Acer ginnala Maxim.,Malus baccata(Linn.)Borkh.,Rhamnus davurica Pall.,and Maackia amurensis Rupr.et Maxim.)to establish biomass equations in a temperate forest of Northeast China.The mixed-species and species-specifi c biomass allometric equations were well fi tted against diameter at breast height(DBH).Adding tree height(H)as the second predictor increased the R^(2)of the models compared with the DBH-only models by–1%to+3%.The R^(2)of DBH-only and DBH-H equations for the total biomass of mixed-species were 0.985 and 0.986,respectively.On average,the biomass allocation proportions for the six species were in the order of stem(45.5%)>branch(30.1%)>belowground(19.5%)>foliage(4.9%),with a mean root:shoot ratio of 0.24.Biomass allocation to each specifi c component diff ered among species,which aff ected the performance of the mixed-species model for particular biomass component.When estimating the biomass of subcanopy species using the equations for canopy species(e.g.,Betula platyphylla Suk.,Ulmus davidiana var.japonica(Rehd.)Nakai,and Acer mono Maxim.),the errors in individual biomass estimation increased with tree size(up to 68.8%at 30 cm DBH),and the errors in stand biomass estimation(up to 19.2%)increased with increasing percentage of basal area shared by subcanopy species.The errors caused by selecting such inappropriate models could be removed by multiplying adjustment factors,which were usually power functions of DBH for biomass components.These results provide methodological support for accurate biomass estimation in temperate China and useful guidelines for biomass estimation for subcanopy species in other regions,which can help to improve estimates of forest biomass and carbon stocks.
基金financially supported by the National Natural Science Foundation of China(Nos.32271679,32071631,41907022,31901165)the Natural Science Foundation of Fujian Province(Nos.2020J01138,2020J01186)。
文摘The underlying mechanisms of the relationships between tree species and the soil micro-food web in forest ecosystems remain uncertain,primarily ascribed to an insufficient understanding on how tree functional traits drive soil nematode communities,including in subtropical forests.We investigated the impacts of seven subtropical tree species(evergreen:Pinus massoniana,Mytilaria laosensis,Ilex chinensis,Michelia macclurei;and deciduous:Liquidambar formosana,Quercus acutissima,and Betula luminifera)on the soil nematode communities.We found that the abundance of soil nematodes was not affected by mycorrhizal types,but it was around 83%higher under the deciduous trees than the evergreen trees,indicating the importance of leaf phenology to the abundance of soil nematodes.Nonetheless,both the evergreen and the arbuscular mycorrhizal trees increased soil nematode diversity,resulting from changes in root traits and soil properties.Furthermore,root traits(root C,root N,and root C:N ratio),and soil properties(total C,total N,moisture content,and bulk density)were the best predictors of the community composition of soil nematodes,indicating a key role of resource quality and soil microhabitat in regulating soil nematodes.In contrast,the ectomycorrhizal trees had lower plant parasite and Wasilewska indices,and evenness,whereas the evergreen trees slightly improved the evenness of soil nematodes.This study suggests that tree species affect the soil food web through changes in soil conditions and plant functional traits in subtropical forests.
基金financially supported by National Key R&D Program of China(2021YFD220040403 and 2021YFD220040304)the China Scholarship Council(202107565021).
文摘Background: Vegetation distribution maps are of great significance for nature protection and management. In diverse tropical forests, accurate spatial mapping of vegetation types is challenging;the high species diversity and abundance of rare species challenge classification concepts, while remote sensing signals may not vary systematically with species composition, complicating the technical capability for delineating vegetation types in the landscape.Methods: We used a combination of field-based compositional data and their relations to environmental variables to predict the distribution of forest types in the Wuzhishan National Natural Reserve(WNNR), Hainan Island,China, using multivariate regression trees(MRT). The MRT was based on arboreal vegetation composition in 132plots of 20 m×20 m with a regular spacing of 1 km. Apart from the MRT, non-metric multidimensional scaling(NMDS) was used to evaluate vegetation-environment relationships.Results: The MRT model worked best when using 14 key environmental variables including topography, climate,latitude and soil, although the difference with the simpler model including only topographical variables was small. The full model classified the 132 plots into 3 vegetation types, 6 formation groups, 20 formations and 65associations at different hierarchical syntaxonomic levels. This model was the basis for forest vegetation maps for the WNNR. MRT and NMDS showed that elevation was the main driving force for the distribution of vegetation types and formation groups. Climate, latitude, and soil(especially available P), together with topographic variables, all influenced the distribution of formations and associations.Conclusions: While elevation determines forest-type distributions, lower-level syntaxonomic forest classes respond to the topographic diversity typical for mountains. Apart from providing the first detailed forest vegetation map for any part of WNNR, we show how, in spite of limitations, MRT with existing environmental data can be a useful method for mapping diverse and remote tropical forests.
基金This work was supported by the Science and Technology Innovation Program of Hunan Province(2022RC4027)the Joint Fund for Regional Innovation and Development of the National Natural Science Foundation of China(U22A20570).
文摘The development of allometric biomass models is important process in biomass estimation because the reliability of forest biomass and carbon estimations largely depends on the accuracy and precision of such models.National Forest Inventories(NFI)are detailed assessments of forest resources at national and regional levels that provide valuable data for forest biomass estimation.However,the lack of biomass allometric equations for each tree species in the NFI currently hampers the estimation of national-scale forest biomass.The main objective of this study was to develop allometric biomass regression equations for each tree species in the NFI of China based on limited biomass observations.These equations optimally grouped NFI and biomass observation species according to their phylogenetic relationships.Significant phylogenetic signals demonstrated phylogenetic conservation of the crown-to-stem biomass ratio.Based on phylogenetic relationships,we grouped and matched NFI and biomass observation species into 22 categories.Allometric biomass regression models were developed for each of these 22 species categories,and the models performed successfully(R^(2)=0.97,root mean square error(RMSE)=12.9t·ha^(–1),relative RMSE=11.5%).Furthermore,we found that phylogeny-based models performed more effectively than wood density-based models.The results suggest that grouping species based on their phylogenetic relationships is a reliable approach for the development and selection of accurate allometric equations.
文摘Tree communities contribute to maintenance of species diversity in tropical forests. Coexistence of many tree species is not without competition. Therefore, coexistence of tree species and size diversities occur sequentially or simultaneously in tropical natural forests. Understanding coexistence and competition mechanisms of tree species requires knowledge of interactions within and between species. However, many conservation efforts and strategies failed due to inability to identify and maintain functional coexistence mechanisms among tree species in the forest. Also, most trees died because of pressure on their habitats and not because of limiting growth resources. Hence, species identity, minimum distance and size of the neighbouring trees which are responsible for coexistence of competing trees in most tropical forests have not been explicitly reviewed. Therefore, this review evaluated some of the density dependent mechanisms for coexistence of tree species alpha diversity in tropical forests. Many interactive mechanisms are responsible for coexistence tree species in tropical forests. Inter- and intra-specific competitions are the most significant and both facilitate positive and negative density dependence. Therefore, switching from negative to positive density dependence may occur in some situations. Positive and negative density effects regulate species abundance and coexistence through conspecific and heterospecific structures. Aggregates of conspecific and heterospecific neighbours constitute forest spatial structure. Negative density interactions are mutually exclusive and basically ranged from effect of species identity of neighbours, distance to neighbours and tree size of the neighbours to reference trees in the community structures. Some mechanisms shorten distances for heterospecific than conspecific interactions. Conspecific structures improved survival and growth of rare tree species. Interactive mechanisms in tree community and population structures facilitate species diversity and size inequality, respectively.
基金This study was supported by the National Key R&D Program of China(2017YFC0505601)the National Natural Science Foundation of China(31570630)State Key Laboratory of Forest and Soil Ecology(LFSE2015-13).
文摘Spatial distribution is fundamental for understanding species coexistence mechanisms in forest communities.Here we comprehensively explored fine-scale spatial patterns of tree species in a secondary warm-temperate deciduous broad-leaved forest community in north China.Aggregated distribution patterns were predominant.Species functional traits had no significant effects on their spatial patterns.The aggregation intensity decreased with increasing DBH and abundance.The multivariate linear stepwise regression showed that abundance and maximum DBH were correlated with the aggregation intensity.Our results partially confirm that species attributes(abundance,DBH)and habitat heterogeneity may primarily contribute to spatial patterns and species coexistence in this secondary forest.
文摘Seeds and seedlings of five broad-leaved species were separately exposed to simulated acid rain at pH values of 2.0, 3.5, 5.0, and 6.0, or to distilled water (the control). The results showed that seed germination was remarkably inhibited by pH 2.0 treatment for three species. Significant foliar damage, decline in chlorophyll contents, and retardation of the seedlings growth of all the species, were observed at pH 2.0 treatment. The pH 2.0 treatment seemed to be a threshold level for inhibition of seed germination and seedling growth for all the treated species, while seedling was stimulated at pH value between 3.5 and 5.0.
基金Acknowledgments The authors thank Ming-Gang Zhang and Katharina Filz for suggestions about problem of multicollinearity and thank Damien Georges for suggestions about modeling.
文摘Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining activities and changing environment.The aims of the study are to investigate climate changeinduced changes of subtropical evergreen broad-leaved forests in Yunnan and identify areas of current species richness centers for conservation preparation.Stacked species distribution models were created to generate ensemble forecasting of species distributions,alpha diversity and beta diversity for Yunnan's subtropical evergreen broad-leaved forests in both current and future climate scenarios.Under stacked species distribution models in rapid climate changes scenarios,changes of water-energy dynamics may possibly reduce beta diversity and increase alpha diversity.This point provides insight for future conservation of evergreen broad-leaved forest in Yunnan,highlighting the need to fully consider the problem of vegetation homogenization caused by transformation of water-energy dynamics.
基金This item was supportedby the National ScienceFoundationof P.R.China (No.39330040,39460022)
文摘Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urgent to conserve and restore these natural forests in China. In this paper,the tendency and rate of species diversity restoration of the evergreen broad-leaved forest in Daming Mountain has been studied.The main resultsare as follows:(a)In subtropical mid-mountain area,species diversity in degraded evergreen broad-leaved forestcan be restored. Through analyzing b diversity index of communities in different time and space,it was found that the species composition of communities tend to be the same as that in the zonal evergreen broad-leaved forest.(b)The restoration rate of evergreen broad-leaved forest was very fast.Planting Chinese fir after clear-cutting and controlled burning of the forest,178 species appeared in a 600m^2 sample area after 20 years’natural recovering.Among the sespecies,58 were tree layer and the height of community reached 18m.The survey suggested that it would take only 20 years for the degraded forest to develop into community composed of lightdemanding broad-leaved pioneer trees and min-tolerance broad-leaved trees,and it need another 40~80 years to reach the stage consisting of min-tolerance evergreen broad-leaved trees.(c)Species number increased quickly at the early stage(2-20years)during vegetation recovering process toward the climax,and decreased at the min-stage (50-60 years),then maintained a relatively stable level at the late-stage (over 150 years).
文摘Recovery of species diversity after catastrophic disturbance was influenced by a few factors, such as intensity of disturbance, availability of propagules, and the environmental conditions, In this paper, we examined pattems of species development after nearly 60a succession in bumed broad-leaved Korean pine mixed forest on northem slope of ChangbaiMountain. We aasessed the recovery of plant species diversity in 3 types of forests under the contition with gradient of soil moisture. Results revealed that recovery of plant species (liversity varied greatly under different environmental conditions.Species richness of secondary forests greatly related to the site condition. Secondary birch forest on mesic site had the greatest number of plant species and the following was poplar-birch forest and larch-birch forest.Most of characteristic taxa couldbe found in birch forest after 60a succession. For larch-birch forest on hydra site, most of climax species were still not able to invade, so it had the lowest species diversity.
文摘Selection of fire resistant tree species for the southwestern China and the planting of those species can effectively prevent large area's fire damage. In this paper the components and flammability of leaves, twigs and barks of 12 tree species in the mountain area of southwestern China have been tested and analyzed in the laboratory. The test and analysis indicate the results as follows:(1) for all the tree species, the fire resistance of leaves is much weaker than that of twigs and barks, and the broad leaves are stronger than those of conifers in fire resistance. (2) Heat value, moisture, ignition point and ash content are main indexes to affect fire resistance. Heat value relates to lignose content and benzene ethanol extractive content linearly.(3) Of all the 12 tree species, Schima superba,Castanopsis hystrix, Myrica rubra have the strongest resistance to fire; Machilus pauhoi, Michelia macclurei, Mytilaria laosensis, Camellia olifera and Manglietia tenuipes are relatively strong in fire resistance, and Lithocapus thalassica, Tsoongiodendron odorum, Cunninghamia lanceolata and Pinus massoniana are weak in fire resistance.
文摘The 16 tree species on Northeast China Transect (NECT) were analyzed from the change of geographical distribution, frequency and dominance pattern and the spatial correlation at landscape scale in 1986 and 1994. Pinus koraiensis Sieb. et Zucc. and Fraxinus rhynchophylla Hemsl. had spread rapidly towards west and east, respectively. The frontier form of species had close relation with its movement. The patch size of Pinus koraiensis , Populus davidiana Dode., Phellodendron amurense Rupr., Juglans mandshurica Maxim., Fraxinus mandshurica Rupr., Betula dahurica Pall., Picea koraiensis Nakai, Abies nephrolepis Maxim. and Larix olgeusis var. koreana Nakai decreased, however, Quercus mongolica Fisch., Betula costata Trautv., Acer mono Maxim., Tilia spp., Ulmus spp., Betula platyphylla Suk. and Fraxinus rhynchophylla increased. The frequency pattern of Populus davidiana , Betula platyphylla , Fraxinus rhynchophylla and Betula dahurica changed significantly. The dominance pattern of Populus davidiana , Tilia spp., Juglans mandshurica , Betula platyphylla , Betula dahurica and Abies nephrolepis changed significantly. The spatial correlation between Quercus mongolica and Betula dahurica , Betula costata and Picea spp., Betula costata and Abies nephrolepis , Picea spp. and Abies nephrolepis declined, however, the spatial correlation between Larix spp. and Betula platyphylla , Acer mono and Ulmus spp. increased.