In this paper,we show how to use the dual techniques in the subgroups to give a secure identity-based broadcast encryption(IBBE) scheme with constant-size ciphertexts. Our scheme achieves the full security(adaptive se...In this paper,we show how to use the dual techniques in the subgroups to give a secure identity-based broadcast encryption(IBBE) scheme with constant-size ciphertexts. Our scheme achieves the full security(adaptive security) under three static(i.e. non q-based) assumptions. It is worth noting that only recently Waters gives a short ciphertext broadcast encryption system that is even adaptively secure under the simple assumptions. One feature of our methodology is that it is relatively simple to leverage our techniques to get adaptive security.展开更多
Broadcast encryption (BE) allows a sender to broadcast its message to a set of receivers in a single ciphertext. However, in broadcast encryption scheme, ciphertext length is always related to the size of the receiver...Broadcast encryption (BE) allows a sender to broadcast its message to a set of receivers in a single ciphertext. However, in broadcast encryption scheme, ciphertext length is always related to the size of the receiver set. Thus, how to improve the communication of broadcast encryption is a big issue. In this paper, we proposed an identity-based homomorphic broadcast encryption scheme which supports an external entity to directly calculate ciphertexts and get a new ciphertext which is the corresponding result of the operation on plaintexts without decrypting them. The correctness and security proofs of our scheme were formally proved. Finally, we implemented our scheme in a simulation environment and the experiment results showed that our scheme is efficient for practical applications.展开更多
This paper introduced a novel method for implementing broadcast encryption. Our scheme takes advantages of bilinear map and group characteristic, and shifts most of the storage overhead to the public device instead of...This paper introduced a novel method for implementing broadcast encryption. Our scheme takes advantages of bilinear map and group characteristic, and shifts most of the storage overhead to the public device instead of storing in the tamper-proof device which is a major problem on current implementation. Furthermore, the broadcast keys in our scheme could be reused periodically resulting in more operational efficiency.展开更多
This paper describes two identity-based broadcast encryption (IBBE) schemes for mobile ad hoc networks. The first scheme proposed achieves sub-linear size cipertexts and the second scheme achieves O(1)- size ciphe...This paper describes two identity-based broadcast encryption (IBBE) schemes for mobile ad hoc networks. The first scheme proposed achieves sub-linear size cipertexts and the second scheme achieves O(1)- size ciphertexts. Furthermore, when the public keys are transmitted, the two schemes have short transmissions and achieve O(1) user storage cost, which are important for a mobile ad hoc network. Finally, the proposed schemes are provable security under the decision generalized bilinear Diffi-Hellman (GBDH) assumption in the random oracles model.展开更多
In this article, based on Chatterjee-Sarkar' hierarchical identity-based encryption (HIBE), a novel identity-based encryption with wildcards (WIBE) scheme is proposed and is proven secure in the standard model (...In this article, based on Chatterjee-Sarkar' hierarchical identity-based encryption (HIBE), a novel identity-based encryption with wildcards (WIBE) scheme is proposed and is proven secure in the standard model (without random oracle). The proposed scheme is proven to be secure assuming that the decisional Bilinear Diffie-Hellman (DBDH) problem is hard. Compared with the Wa-WIBE scheme that is secure in the standard model, our scheme has shorter common parameters and ciphertext length.展开更多
Hierarchical Identity-Based Broadcast Encryption (HIBBE) organizes users into a tree-like structure, and it allows users to delegate their decryption ability to subordinates and enable encryption to any subset of us...Hierarchical Identity-Based Broadcast Encryption (HIBBE) organizes users into a tree-like structure, and it allows users to delegate their decryption ability to subordinates and enable encryption to any subset of users while only intended users can decrypt. However, current HIBBE schemes do not support efficient revocation of private keys. Here, a new primitive called Revocable Hierarchical Identity-Based Broadcast Encryption (RHIBBE) is formalized that allows revocation of the HIBBE. Ciphertext indistinguishability is defined against the selectively Bounded Revocable Identity-Vector-Set and Chosen-Plaintext Attack (IND-sBRIVS-CPA). An IND-sBRIVS-CPA secure RHIBBE scheme is constructed with efficient revocation on prime-order bilinear groups. The unbounded version of the scheme is also shown to be secure but a little weaker than the former under the decisional n-Weak Bilinear Diffie-Hellman inversion assumption.展开更多
Current identity-based (ID) cryptosystem lacks the mechanisms of two-party authentication and user's private key distribution. Some ID-based signcryption schemes and ID-based authenticated key agreement protocols h...Current identity-based (ID) cryptosystem lacks the mechanisms of two-party authentication and user's private key distribution. Some ID-based signcryption schemes and ID-based authenticated key agreement protocols have been presented, but they cannot solve the problem completely. A novel ID-based authentication scheme based on ID-based encrypfion (IBE) and fingerprint hashing method is proposed to solve the difficulties in the IBE scheme, which includes message receiver authenticating the sender, the trusted authority (TA) authenticating the users and transmitting the private key to them. Furthermore, the scheme extends the application of fingerprint authentication from terminal to network and protects against fingerprint data fabrication. The fingerprint authentication method consists of two factors. This method combines a token key, for example, the USB key, with the user's fingerprint hash by mixing a pseudo-random number with the fingerprint feature. The security and experimental efficiency meet the requirements of practical applications.展开更多
Searchable public key encryption enables a storage server to retrieve the publicly encrypted data without revealing the original data contents.It offers a perfect cryptographic solution to encrypted data retrieval in ...Searchable public key encryption enables a storage server to retrieve the publicly encrypted data without revealing the original data contents.It offers a perfect cryptographic solution to encrypted data retrieval in encrypted data storage systems.Certificateless cryptography(CLC)is a novel cryptographic primitive that has many merits.It overcomes the key escrow problem in identity-based cryptosystems and the cumbersome certificate problem in conventional public key cryptosystems.Motivated by the appealing features of CLC,three certificateless encryption with keyword search(CLEKS)schemes were presented in the literature.However,all of them were constructed with the costly bilinear pairing and thus are not suitable for the devices that have limited computing resources and battery power.So,it is interesting and worthwhile to design a CLEKS scheme without using bilinear pairing.In this study,we put forward a pairing-free CLEKS scheme that does not exploit bilinear pairing.We strictly prove that the scheme achieves keyword ciphertext indistinguishability against adaptive chosen-keyword attacks under the complexity assumption of the computational Diffie-Hellman problem in the random oracle model.Efficiency comparison and the simulation show that it enjoys better performance than the previous pairing-based CLEKS schemes.In addition,we briefly introduce three extensions of the proposed CLEKS scheme.展开更多
The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the au...The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the author presents a certificateless threshold public key encryption scheme.Collaborating with an administrator,the decryption participant generates his whole private key share for decryption in the scheme.The administrator does not know the decryption participant's private key share for decryption.Making use of q-SDH assumption,the author constructs a certificateless threshold public key encryption scheme.The security of the scheme is eventually reduced to the solving of Decisional Bilinear Diffie-Hellman problem.Moreover,the scheme is secure under the chosen ciphertext attack in the standard model.展开更多
According to the relation of an attribute set and its subset,the author presents a hierarchical attribute-based encryption scheme in which a secret key is associated with an attribute set.A user can delegate the priva...According to the relation of an attribute set and its subset,the author presents a hierarchical attribute-based encryption scheme in which a secret key is associated with an attribute set.A user can delegate the private key corresponding to any subset of an attribute set while he has the private key corresponding to the attribute set.Moreover,the size of the ciphertext is constant,but the size of private key is linear with the order of the attribute set in the hierarchical attribute-based encryption scheme.Lastly,we can also prove that this encryption scheme meets the security of IND-sSETCPA in the standard model.展开更多
In this paper, an efficient hybrid proxy re-encryption scheme that allows the transformation of the ciphertexts in a traditional public key cryptosystem into the ciphertexts in an identity-based system is proposed. Th...In this paper, an efficient hybrid proxy re-encryption scheme that allows the transformation of the ciphertexts in a traditional public key cryptosystem into the ciphertexts in an identity-based system is proposed. The scheme is non-interactive, unidirectional and collude "safe". Furthermore, it is compatible with current IBE (identity-based encryption) deployments. The scheme has chosen ciphertext security in the random oracle model assuming the hardness of the Decisional Bilinear Diffie-Hellman problem.展开更多
基金supported by the Nature Science Foundation of China under grant 60970119, 60803149the National Basic Research Program of China(973) under grant 2007CB311201
文摘In this paper,we show how to use the dual techniques in the subgroups to give a secure identity-based broadcast encryption(IBBE) scheme with constant-size ciphertexts. Our scheme achieves the full security(adaptive security) under three static(i.e. non q-based) assumptions. It is worth noting that only recently Waters gives a short ciphertext broadcast encryption system that is even adaptively secure under the simple assumptions. One feature of our methodology is that it is relatively simple to leverage our techniques to get adaptive security.
文摘Broadcast encryption (BE) allows a sender to broadcast its message to a set of receivers in a single ciphertext. However, in broadcast encryption scheme, ciphertext length is always related to the size of the receiver set. Thus, how to improve the communication of broadcast encryption is a big issue. In this paper, we proposed an identity-based homomorphic broadcast encryption scheme which supports an external entity to directly calculate ciphertexts and get a new ciphertext which is the corresponding result of the operation on plaintexts without decrypting them. The correctness and security proofs of our scheme were formally proved. Finally, we implemented our scheme in a simulation environment and the experiment results showed that our scheme is efficient for practical applications.
基金Supported by the National Natural Science Foun-dation of China (60432030) Asian Media Research Center Foun-dation (AM0551)
文摘This paper introduced a novel method for implementing broadcast encryption. Our scheme takes advantages of bilinear map and group characteristic, and shifts most of the storage overhead to the public device instead of storing in the tamper-proof device which is a major problem on current implementation. Furthermore, the broadcast keys in our scheme could be reused periodically resulting in more operational efficiency.
基金the National Natural Science Foundation of China (Nos. 60673072, 60803149)the National Basic Research Program (973) of China(No. 2007CB311201)
文摘This paper describes two identity-based broadcast encryption (IBBE) schemes for mobile ad hoc networks. The first scheme proposed achieves sub-linear size cipertexts and the second scheme achieves O(1)- size ciphertexts. Furthermore, when the public keys are transmitted, the two schemes have short transmissions and achieve O(1) user storage cost, which are important for a mobile ad hoc network. Finally, the proposed schemes are provable security under the decision generalized bilinear Diffi-Hellman (GBDH) assumption in the random oracles model.
基金supported by the National Natural Science Foundation of China (60473027).
文摘In this article, based on Chatterjee-Sarkar' hierarchical identity-based encryption (HIBE), a novel identity-based encryption with wildcards (WIBE) scheme is proposed and is proven secure in the standard model (without random oracle). The proposed scheme is proven to be secure assuming that the decisional Bilinear Diffie-Hellman (DBDH) problem is hard. Compared with the Wa-WIBE scheme that is secure in the standard model, our scheme has shorter common parameters and ciphertext length.
基金supported by the National Key Research and Development Program of China (No. 2017YFB0802502)the National Natural Science Foundation of China (Nos. 61672083, 61370190, 61532021, 61472429, 61402029, 61702028, and 61571024)+3 种基金the National Cryptography Development Fund (No. MMJJ20170106)the Planning Fund Project of Ministry of Education (No. 12YJAZH136)the Beijing Natural Science Foundation (No. 4132056)the Fund of the State Key Laboratory of Information Security, the Institute of Information Engineering, and the Chinese Academy of Sciences (No. 2017-MS-02)
文摘Hierarchical Identity-Based Broadcast Encryption (HIBBE) organizes users into a tree-like structure, and it allows users to delegate their decryption ability to subordinates and enable encryption to any subset of users while only intended users can decrypt. However, current HIBBE schemes do not support efficient revocation of private keys. Here, a new primitive called Revocable Hierarchical Identity-Based Broadcast Encryption (RHIBBE) is formalized that allows revocation of the HIBBE. Ciphertext indistinguishability is defined against the selectively Bounded Revocable Identity-Vector-Set and Chosen-Plaintext Attack (IND-sBRIVS-CPA). An IND-sBRIVS-CPA secure RHIBBE scheme is constructed with efficient revocation on prime-order bilinear groups. The unbounded version of the scheme is also shown to be secure but a little weaker than the former under the decisional n-Weak Bilinear Diffie-Hellman inversion assumption.
基金China Post-Doctor Science Fund (20060390414)the National Natural Science Foundation of China (90604022)+2 种基金the Natural Science Foundation of Beijing (4062025)the National Basic Research Program of China (2007CB311203)the 111 Project (B08004)
文摘Current identity-based (ID) cryptosystem lacks the mechanisms of two-party authentication and user's private key distribution. Some ID-based signcryption schemes and ID-based authenticated key agreement protocols have been presented, but they cannot solve the problem completely. A novel ID-based authentication scheme based on ID-based encrypfion (IBE) and fingerprint hashing method is proposed to solve the difficulties in the IBE scheme, which includes message receiver authenticating the sender, the trusted authority (TA) authenticating the users and transmitting the private key to them. Furthermore, the scheme extends the application of fingerprint authentication from terminal to network and protects against fingerprint data fabrication. The fingerprint authentication method consists of two factors. This method combines a token key, for example, the USB key, with the user's fingerprint hash by mixing a pseudo-random number with the fingerprint feature. The security and experimental efficiency meet the requirements of practical applications.
基金Project supported by the National Natural Science Foundation of China(Nos.61772009 and U1736112)the Fundamental Research Funds for the Central Universities,China(Nos.2016B10114 and 2017B17014)the Natural Science Foundation of Jiangsu Province,China(No.BK20181304)
文摘Searchable public key encryption enables a storage server to retrieve the publicly encrypted data without revealing the original data contents.It offers a perfect cryptographic solution to encrypted data retrieval in encrypted data storage systems.Certificateless cryptography(CLC)is a novel cryptographic primitive that has many merits.It overcomes the key escrow problem in identity-based cryptosystems and the cumbersome certificate problem in conventional public key cryptosystems.Motivated by the appealing features of CLC,three certificateless encryption with keyword search(CLEKS)schemes were presented in the literature.However,all of them were constructed with the costly bilinear pairing and thus are not suitable for the devices that have limited computing resources and battery power.So,it is interesting and worthwhile to design a CLEKS scheme without using bilinear pairing.In this study,we put forward a pairing-free CLEKS scheme that does not exploit bilinear pairing.We strictly prove that the scheme achieves keyword ciphertext indistinguishability against adaptive chosen-keyword attacks under the complexity assumption of the computational Diffie-Hellman problem in the random oracle model.Efficiency comparison and the simulation show that it enjoys better performance than the previous pairing-based CLEKS schemes.In addition,we briefly introduce three extensions of the proposed CLEKS scheme.
基金Supported by the National Natural Science Foundation of China(60903175,60703048)the Natural Science Foundation of Hubei Province (2009CBD307,2008CDB352)
文摘The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the author presents a certificateless threshold public key encryption scheme.Collaborating with an administrator,the decryption participant generates his whole private key share for decryption in the scheme.The administrator does not know the decryption participant's private key share for decryption.Making use of q-SDH assumption,the author constructs a certificateless threshold public key encryption scheme.The security of the scheme is eventually reduced to the solving of Decisional Bilinear Diffie-Hellman problem.Moreover,the scheme is secure under the chosen ciphertext attack in the standard model.
基金Supported by the National Natural Science Foundation of China(60903175,60703048)the Natural Science Foundation of Hubei Province(2009CBD307,2008CDB352)
文摘According to the relation of an attribute set and its subset,the author presents a hierarchical attribute-based encryption scheme in which a secret key is associated with an attribute set.A user can delegate the private key corresponding to any subset of an attribute set while he has the private key corresponding to the attribute set.Moreover,the size of the ciphertext is constant,but the size of private key is linear with the order of the attribute set in the hierarchical attribute-based encryption scheme.Lastly,we can also prove that this encryption scheme meets the security of IND-sSETCPA in the standard model.
基金Supported by the National Natural Science Foundation of China (60673070)the Natural Science Foundation of Jiangsu Province, China (BK2006217)
文摘In this paper, an efficient hybrid proxy re-encryption scheme that allows the transformation of the ciphertexts in a traditional public key cryptosystem into the ciphertexts in an identity-based system is proposed. The scheme is non-interactive, unidirectional and collude "safe". Furthermore, it is compatible with current IBE (identity-based encryption) deployments. The scheme has chosen ciphertext security in the random oracle model assuming the hardness of the Decisional Bilinear Diffie-Hellman problem.