Eight F<sub>1</sub>-hybrid cultivars of broccoli were studied.We obtained cell division,celled colonies and p-calli in 5 cultivars,roots and shoots regeneration in one cultivar.The leavesof propagated plan...Eight F<sub>1</sub>-hybrid cultivars of broccoli were studied.We obtained cell division,celled colonies and p-calli in 5 cultivars,roots and shoots regeneration in one cultivar.The leavesof propagated plantlets in vitro were cut into 1—2mm pieces,isolated with an enzyme solutioncontaining 2% cellulase and 1%macerase on a rotary shaker(50 rpm,21℃,3h,2500 lux light),and purified with a 0.5M sucrose solution.The purified protoplasts were placed on a drop of 1%agarose.2—3 ml liquid medium was added around the agarose drops,and all of the cultures wereincubated at 25℃ under light(4000 lux)for 16 hours.3—5 days after isolation the cell divisionwas found.About 7 days after incubation 4 multicellular colonies were formed.After 3—5 wksome p-calli were developed.When the p-calli were 2—3 mm in diameter it was transferred to asolidified medium.Once they were developed to 1 cm in diameter they were transferred on a re-generation medium.About 5 months after incubation some roots and shoots grown from the calliwere展开更多
Broccoli(Brassica oleracea var.italica),also called green broccoli,green cauliflower,and calabrese,belongs to genus Brassica in family Cruciferae,and is annual or biennial herbaceous plant.Both broccoli and cauliflowe...Broccoli(Brassica oleracea var.italica),also called green broccoli,green cauliflower,and calabrese,belongs to genus Brassica in family Cruciferae,and is annual or biennial herbaceous plant.Both broccoli and cauliflower are varieties of Brassica oleracea L.Broccoli is rich in nutrients.Its protein,amino acids and vitamins are higher than cauliflower,and broccoli is easy to grow,the supply period is long,and it has a good market and economic value.This paper introduced broccoli-related information from broccoli's nutritional value,cultivation techniques,existing problems and prospects.In addition,on the basis of existing studies,it discussed the future development prospects of broccoli,in order to promote the production research of broccoli in China.展开更多
Sulforaphane, a naturally specialized metabolite, plays significant roles in human disease prevention and plant defense. Myrosinase(MY) is a key gene responsible for the catalysis of sulforaphane formation, but the mo...Sulforaphane, a naturally specialized metabolite, plays significant roles in human disease prevention and plant defense. Myrosinase(MY) is a key gene responsible for the catalysis of sulforaphane formation, but the molecular mechanisms through which MY regulates sulforaphane biosynthesis in plants remains largely unknown. Here, we discovered that the change of sulforaphane content in broccoli sprouts caused by exogenous selenite treatments is positively related to BoMY expression. BoMY overexpression in the Arabidopsis thaliana tgg1 mutants could dramatically increase myrosinase activity and sulforaphane content in the rosette leaves of 35S::BoMY/tgg1 and rescue its phenotypes.Moreover, an obvious increase of myrosinase activity and sulforaphane content was displayed in transgenic BoMY-overexpressed broccoli lines.In addition, a 2 033 bp promoter fragment of BoMY was isolated. Yeast one-hybrid(Y1H) library screening experiment uncovered that one bHLH transcription factor, BoFAMA, could directly bind to BoMY promoter to activate its expression, which was further evidenced by Y1H assay and dual-luciferase reporter assay. BoFAMA is a selenite-responsive transcription factor that is highly expressed in broccoli leaves;its protein is solely localized to nucleus. Additionally, genetic evidence suggested that the knockdown of FAMA gene in Arabidopsis thaliana could significantly decrease sulforaphane yield by inhibiting the expression of myrosinase genes. Interestingly, exogenous selenite supply could partially restore the low level of sulforaphane content in transgenic Arabidopsis FAMA-silencing plants. Our findings uncover a novel function of FAMAMY module in the regulation of selenite-mediated sulforaphane synthesis and provide a new insights into the molecular mechanism by which selenite regulates the accumulation of sulforaphane in plants.展开更多
文摘Eight F<sub>1</sub>-hybrid cultivars of broccoli were studied.We obtained cell division,celled colonies and p-calli in 5 cultivars,roots and shoots regeneration in one cultivar.The leavesof propagated plantlets in vitro were cut into 1—2mm pieces,isolated with an enzyme solutioncontaining 2% cellulase and 1%macerase on a rotary shaker(50 rpm,21℃,3h,2500 lux light),and purified with a 0.5M sucrose solution.The purified protoplasts were placed on a drop of 1%agarose.2—3 ml liquid medium was added around the agarose drops,and all of the cultures wereincubated at 25℃ under light(4000 lux)for 16 hours.3—5 days after isolation the cell divisionwas found.About 7 days after incubation 4 multicellular colonies were formed.After 3—5 wksome p-calli were developed.When the p-calli were 2—3 mm in diameter it was transferred to asolidified medium.Once they were developed to 1 cm in diameter they were transferred on a re-generation medium.About 5 months after incubation some roots and shoots grown from the calliwere
文摘Broccoli(Brassica oleracea var.italica),also called green broccoli,green cauliflower,and calabrese,belongs to genus Brassica in family Cruciferae,and is annual or biennial herbaceous plant.Both broccoli and cauliflower are varieties of Brassica oleracea L.Broccoli is rich in nutrients.Its protein,amino acids and vitamins are higher than cauliflower,and broccoli is easy to grow,the supply period is long,and it has a good market and economic value.This paper introduced broccoli-related information from broccoli's nutritional value,cultivation techniques,existing problems and prospects.In addition,on the basis of existing studies,it discussed the future development prospects of broccoli,in order to promote the production research of broccoli in China.
基金funded by the National Key Research and Development Program of China (Grant Nos.2022YFF1003000,2022YFE0108300)the Natural Science Foundation of China (Grant Nos.32272747,32072585,32072568)+1 种基金the Natural Science Foundation of Hunan Province (Grant Nos.2021JJ30324,2021JJ30345)the Outstanding Youth Project of Educational Department of Hunan Province (Grant No.20B275)。
文摘Sulforaphane, a naturally specialized metabolite, plays significant roles in human disease prevention and plant defense. Myrosinase(MY) is a key gene responsible for the catalysis of sulforaphane formation, but the molecular mechanisms through which MY regulates sulforaphane biosynthesis in plants remains largely unknown. Here, we discovered that the change of sulforaphane content in broccoli sprouts caused by exogenous selenite treatments is positively related to BoMY expression. BoMY overexpression in the Arabidopsis thaliana tgg1 mutants could dramatically increase myrosinase activity and sulforaphane content in the rosette leaves of 35S::BoMY/tgg1 and rescue its phenotypes.Moreover, an obvious increase of myrosinase activity and sulforaphane content was displayed in transgenic BoMY-overexpressed broccoli lines.In addition, a 2 033 bp promoter fragment of BoMY was isolated. Yeast one-hybrid(Y1H) library screening experiment uncovered that one bHLH transcription factor, BoFAMA, could directly bind to BoMY promoter to activate its expression, which was further evidenced by Y1H assay and dual-luciferase reporter assay. BoFAMA is a selenite-responsive transcription factor that is highly expressed in broccoli leaves;its protein is solely localized to nucleus. Additionally, genetic evidence suggested that the knockdown of FAMA gene in Arabidopsis thaliana could significantly decrease sulforaphane yield by inhibiting the expression of myrosinase genes. Interestingly, exogenous selenite supply could partially restore the low level of sulforaphane content in transgenic Arabidopsis FAMA-silencing plants. Our findings uncover a novel function of FAMAMY module in the regulation of selenite-mediated sulforaphane synthesis and provide a new insights into the molecular mechanism by which selenite regulates the accumulation of sulforaphane in plants.