In order to overcome the flaws of present domestic devices for detecting faulty wires such as low precision,low sensitivity and instability,a new instrument for detecting and processing the signal of flux leakage caus...In order to overcome the flaws of present domestic devices for detecting faulty wires such as low precision,low sensitivity and instability,a new instrument for detecting and processing the signal of flux leakage caused by bro-ken wires of coal mine-hoist cables is investigated. The principle of strong magnetic detection was adopted in the equipment. Wires were magnetized by a pre-magnetic head to reach magnetization saturation. Our special feature is that the number of flux-gates installed along the circle direction on the wall of sensors is twice as large as the number of strands in the wire cable. Neighboring components are connected in series and the interference on the surface of the wire cable,produced by leakage from the flux field of the wire strands,is efficiently filtered. The sampled signal se-quence produced by broken wires,which is characterized by a three-dimensional distribution of the flux-leakage field on the surface of the wire cable,can be dimensionally condensed and characteristically extracted. A model of a BP neu-ral network is built and the algorithm of the BP neural network is then used to identify the number of broken wires quantitatively. In our research,we used a 6×37+FC,Φ24 mm wire cable as our test object. Randomly several wires were artificially broken and damaged to different degrees. The experiments were carried out 100 times to obtain data for 100 groups from our samples. The data were then entered into the BP neural network and trained. The network was then used to identify a total 16 wires,broken at five different locations. The test data proves that our new device can enhance the precision in detecting broken and damaged wires.展开更多
Aiming at the major failure mode of prestressed concrete cylinder pipes (PCCP),namely the fracture of prestressed steel wires,the broken wire detection technology based on orthogonal electromagnetic principle is studi...Aiming at the major failure mode of prestressed concrete cylinder pipes (PCCP),namely the fracture of prestressed steel wires,the broken wire detection technology based on orthogonal electromagnetic principle is studied. The detection system model is established and optimized by using COMSOL finite element simulation software. Furthermore,the theoretical analysis of the wire-breaking effect is carried out. The influence of factors on broken wire signal characteristics such as edge effect,circumferential relative position of the detector and broken wires,excitation frequency and relative permeability of steel wires is analyzed,which provides a theoretical guidance for the field detection. The influence of the steel cylinder structure on the simulation results is analyzed,which provides a reference for the improvement of calculation efficiency. The corresponding detection system is designed and implemented. Concretely,a high-voltage and high-power sinusoidal signal coil drive scheme based on sinusoidal pulse width modulation technology and an intelligent power module is innovatively proposed and the corresponding protection circuit is designed. The broken wire signal could be effectively extracted through a lock-in amplifier. The experimental results show that this system can effectively identify the broken wires with low cost.展开更多
By simplifying saturatedly magnetized wire-rope to magnetic dipoles of the same magnetic field strength, an equivalent magnetic dipoles model is developed and the measuring principle for recognising damage of broken w...By simplifying saturatedly magnetized wire-rope to magnetic dipoles of the same magnetic field strength, an equivalent magnetic dipoles model is developed and the measuring principle for recognising damage of broken wire was presented. The relevant calculation formulas were also deduced. A composite solution method about nonlinear optimization was given. An example was given to illustrate the use of the equivalent magnetic dipoles method for quantitative damage recognition, and demonstrates that the result of this method is consistent with the real situation, so the method is valid and practical. wire-rope, damage of broken wires, quantitative recognition, equivalent magnetic dipoles, simulate展开更多
The smart cable with embedded distributed fiber optical Bragg grating (FBG) sensors was chosen as the object to study a new diagnosis method about broken wires of the bridge cable. The diagnosis strategy based on ca...The smart cable with embedded distributed fiber optical Bragg grating (FBG) sensors was chosen as the object to study a new diagnosis method about broken wires of the bridge cable. The diagnosis strategy based on cable force and stress distribution state of steel wires was put forward. By establishing the bridge-cable and cable-steel wires model, the broken wires sample database was simulated numerically. A method of the characterization cable state pattern which can both represent the degree and location of broken wires inside a cable was put forward. The training and predicting results of the sample database by the back propagation (BP) neural network showed that the proposed broken wires diagnosis method was feasible and expanded the broken wires diagnosis research area by using the smart cable which was used to be only representing cable force.展开更多
When a lightning current is impressed through a copper wire, the copper wire would be melted. A straight thin copper wire with a diameter of 0.1 mm,~ is melted due to the specific melting Joule heating (j^2t)m in an...When a lightning current is impressed through a copper wire, the copper wire would be melted. A straight thin copper wire with a diameter of 0.1 mm,~ is melted due to the specific melting Joule heating (j^2t)m in an adiabatic condition. However, it has been recognized in the experiment that the thicker copper wires of φ1 mm are not completely melted, but sheared mainly at the connecting terminal by a relatively low impulse current. Electro-magnetic mechanical shearing stress, etc. are discussed in addition to the conventional Joule heating. New broken mechanisms were presumed and proved in the additional experiments.展开更多
文摘In order to overcome the flaws of present domestic devices for detecting faulty wires such as low precision,low sensitivity and instability,a new instrument for detecting and processing the signal of flux leakage caused by bro-ken wires of coal mine-hoist cables is investigated. The principle of strong magnetic detection was adopted in the equipment. Wires were magnetized by a pre-magnetic head to reach magnetization saturation. Our special feature is that the number of flux-gates installed along the circle direction on the wall of sensors is twice as large as the number of strands in the wire cable. Neighboring components are connected in series and the interference on the surface of the wire cable,produced by leakage from the flux field of the wire strands,is efficiently filtered. The sampled signal se-quence produced by broken wires,which is characterized by a three-dimensional distribution of the flux-leakage field on the surface of the wire cable,can be dimensionally condensed and characteristically extracted. A model of a BP neu-ral network is built and the algorithm of the BP neural network is then used to identify the number of broken wires quantitatively. In our research,we used a 6×37+FC,Φ24 mm wire cable as our test object. Randomly several wires were artificially broken and damaged to different degrees. The experiments were carried out 100 times to obtain data for 100 groups from our samples. The data were then entered into the BP neural network and trained. The network was then used to identify a total 16 wires,broken at five different locations. The test data proves that our new device can enhance the precision in detecting broken and damaged wires.
基金National Natural Science Foundation of China(No.61304244)
文摘Aiming at the major failure mode of prestressed concrete cylinder pipes (PCCP),namely the fracture of prestressed steel wires,the broken wire detection technology based on orthogonal electromagnetic principle is studied. The detection system model is established and optimized by using COMSOL finite element simulation software. Furthermore,the theoretical analysis of the wire-breaking effect is carried out. The influence of factors on broken wire signal characteristics such as edge effect,circumferential relative position of the detector and broken wires,excitation frequency and relative permeability of steel wires is analyzed,which provides a theoretical guidance for the field detection. The influence of the steel cylinder structure on the simulation results is analyzed,which provides a reference for the improvement of calculation efficiency. The corresponding detection system is designed and implemented. Concretely,a high-voltage and high-power sinusoidal signal coil drive scheme based on sinusoidal pulse width modulation technology and an intelligent power module is innovatively proposed and the corresponding protection circuit is designed. The broken wire signal could be effectively extracted through a lock-in amplifier. The experimental results show that this system can effectively identify the broken wires with low cost.
基金Supported by the National Natural Science Foundation of China(50475166) and Natural Science Foundation of Shandong Province (Y2002F09) and Qingdao Scientific Bureau(04-3NS-10)
文摘By simplifying saturatedly magnetized wire-rope to magnetic dipoles of the same magnetic field strength, an equivalent magnetic dipoles model is developed and the measuring principle for recognising damage of broken wire was presented. The relevant calculation formulas were also deduced. A composite solution method about nonlinear optimization was given. An example was given to illustrate the use of the equivalent magnetic dipoles method for quantitative damage recognition, and demonstrates that the result of this method is consistent with the real situation, so the method is valid and practical. wire-rope, damage of broken wires, quantitative recognition, equivalent magnetic dipoles, simulate
基金The research work reported in this paper was supported by the National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, China. Thanks for the support of the Fundamental Research Funds for the Central Universities (WUT: 2014-IV-090) and the National Natural Science Foundation of China (Major Program: 61290310). Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
文摘The smart cable with embedded distributed fiber optical Bragg grating (FBG) sensors was chosen as the object to study a new diagnosis method about broken wires of the bridge cable. The diagnosis strategy based on cable force and stress distribution state of steel wires was put forward. By establishing the bridge-cable and cable-steel wires model, the broken wires sample database was simulated numerically. A method of the characterization cable state pattern which can both represent the degree and location of broken wires inside a cable was put forward. The training and predicting results of the sample database by the back propagation (BP) neural network showed that the proposed broken wires diagnosis method was feasible and expanded the broken wires diagnosis research area by using the smart cable which was used to be only representing cable force.
文摘When a lightning current is impressed through a copper wire, the copper wire would be melted. A straight thin copper wire with a diameter of 0.1 mm,~ is melted due to the specific melting Joule heating (j^2t)m in an adiabatic condition. However, it has been recognized in the experiment that the thicker copper wires of φ1 mm are not completely melted, but sheared mainly at the connecting terminal by a relatively low impulse current. Electro-magnetic mechanical shearing stress, etc. are discussed in addition to the conventional Joule heating. New broken mechanisms were presumed and proved in the additional experiments.