Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspect...Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspects of plants’growth and metabolism.In response to this adversity,medicinal plants employ mechanisms such as morphological and structural adjustments,modulation of drought-resistant genes,and augmented synthesis of secondary metabolites and osmotic regulatory substances to alleviate the stress.Extreme water scarcity can lead to leaf wilting and may ultimately result in plant death.The cultivation and management of medicinal plants under stress conditions often differ from those of other crops.This is because the main goal with medicinal plants is not only to increase the yield of the above-ground parts but also to enhance the production of active ingredients such as essential oils.To elucidate these mechanisms of drought resistance in medicinal and aromatic plants,the current review provides a summary of recent literature encompassing studies on the morphology,physiology,and biochemistry of medicinal and aromatic plants under drought conditions.展开更多
Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of C...Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of Cd in agricultural crops constitutes a primary vector for its entry into the human diet. This issue warrants urgent attention from both the scientific community and policymakers to develop and implement effective mitigation strategies. This review delves into the physiological impacts of Cd stress on plants, including the suppression of photosynthetic activity, amplification of oxidative stress, and disruptions in mineral nutrient homeostasis. Additionally, the resistance mechanisms deployed by plants in response to Cd stress have been explored, and the prospective contributions of molecular breeding strategies in augmenting crop tolerance to Cd and minimizing its bioaccumulation have been assessed. By integrating and analyzing these findings, we seek to inform future research trajectories and proffer strategic approaches to enhance agricultural sustainability, safeguard human health, and protect environmental integrity.展开更多
Drought(water shortage)can substantially limit the yield and economic value of rose plants(Rosa spp.).Here,we characterized the effect of exogenous calcium(Ca^(2+))on the antioxidant system and photosynthesis-related ...Drought(water shortage)can substantially limit the yield and economic value of rose plants(Rosa spp.).Here,we characterized the effect of exogenous calcium(Ca^(2+))on the antioxidant system and photosynthesis-related properties of rose under polyethylene glycol 6000(PEG6000)-induced drought stress.Chlorophyll levels,as well as leaf and root biomass,were significantly reduced by drought;drought also had a major effect on the enzymatic antioxidant system and increased concentrations of reactive oxygen species.Application of exogenous Ca^(2+)increased the net photosynthetic rate and stomatal conductance of leaves,enhanced water-use efficiency,and increased the length and width of stomata following exposure to drought.Organ-specific physiological responses were observed under different concentrations of Ca^(2+).Application of 5 mmol·L^(-1)Ca^(2+)promoted photosynthesis and antioxidant activity in the leaves,and application of 10 mmol·L^(-1)Ca^(2+)promoted antioxidant activity in the roots.Application of exogenous Ca^(2+)greatly enhanced the phenotype and photosynthetic capacity of potted rose plants following exposure to drought stress.Overall,our findings indicate that the application of exogenous Ca^(2+)enhances the drought resistance of roses by promoting physiological adaptation and that it could be used to aid the cultivation of rose plants.展开更多
The objective of this study was to explain the physiological mechanisms through which Na_(2)SeO_(3) mitigates the growth and developmental inhibition of pakchoi under HgCl_(2)stress.The results showed that treatment w...The objective of this study was to explain the physiological mechanisms through which Na_(2)SeO_(3) mitigates the growth and developmental inhibition of pakchoi under HgCl_(2)stress.The results showed that treatment with HgCl_(2)(40 mg L^(−1))led to reduced biomass,dwarfing,root shortening,and root tip necrosis in pakchoi.Compared to control(CK),the activities of superoxide dismutase(SOD)and peroxidase(POD)in Hg treatment increased,and the content of malondialdehyde(MDA)also dramatically increased,which negatively impacted the growth of pakchoi.Low concentrations of Na_(2)SeO_(3)(0.2 mg L^(−1))significantly increased the content of soluble sugars compared with control,while chlorophyll,soluble proteins,free amino acids,and vitamin C had no significant changes.The results of the mixed treatments with HgCl_(2)and Na_(2)SeO_(3) suggested that selenium may be able to reduce the toxicity of mercury in pakchoi.The biomass,plant height,root length,chlorophyll content,soluble protein,other physiological indicators,and proline showed significant increases compared with the HgCl_(2)treatment.Additionally,the MDA content and mercury accumulation in pakchoi decreased.Our results revealed the antagonistic effects of selenium and mercury in pakchoi.Thus,a theoretical basis for studying pakchoi’s mercuryexcreted and selenium-rich cultivation technology was provided.展开更多
In order to explore the response mechanism of Passiflora edulis Sims to drought stress,the changes in morpho-logical and physiological traits of Passiflora edulis Sims under different drought conditions were studied.A t...In order to explore the response mechanism of Passiflora edulis Sims to drought stress,the changes in morpho-logical and physiological traits of Passiflora edulis Sims under different drought conditions were studied.A total of 7 germplasm resources of Passiflora edulis Sims were selected and tested under drought stress by the pot culture method under 4 treatment levels:75%–80%(Control,CK)of maximumfield water capacity,55%–60%(Light Drought,LD)of maximumfield water capacity,i.e.,mild drought,40%–45%(Moderate Drought,MD)of max-imumfield water capacity,i.e.,moderate drought and 30%–35%(Severe Drought,SD)of maximumfield water capacity,i.e.,severe drought.On the 40th day of drought treatment,13 indices,including seedling growth mor-phology,physiology,and biochemistry,were measured.The results showed that under drought stress,the height and ground diameter of P.edulis Sims gradually decreased with increasing drought stress,and there were signifi-cant differences in seedling height and ground diameter among the treatments.Drought stress significantly inhib-ited the growth of seven P.edulis Sims varieties.The contents of soluble sugar(SS),soluble protein(SP),proline(Pro),and other substances in P.edulis Sims basically increased with increasing drought stress.With the aggrava-tion of drought stress,the malondialdehyde(MDA)content of P.edulis Sims tended to increase to different degrees,the superoxide dismutase(SOD)activity and peroxidase(POD)activity both tended to increase atfirst and then decrease,and the change in catalase(CAT)activity mostly showed a gradual increasing trend.The con-tents of endogenous hormones in P.edulis Sims significantly differed under different degrees of drought stress.With the aggravation of drought stress,the abscisic acid(ABA)content of P.edulis Sims tended to increase,whereas the contents of gibberellin(GA),indoleacetic acid(IAA),and zeatin nucleoside(ZR)exhibited a down-ward trend.A comprehensive evaluation of the drought resistance of seven P.edulis Sims varieties was conducted based on the principal component analysis method,and the results showed that the drought resistance decreased in the order XH-BL>XH-TWZ>TN1>GH1>ZJ-MT>LP-LZ>DH-JW.展开更多
In this study,we analyzed the agronomic and physiological indicators of the leaves and roots of 60 hulless barley varieties under low-temperature treatment,identified the crucial indicators that can reflect the ability ...In this study,we analyzed the agronomic and physiological indicators of the leaves and roots of 60 hulless barley varieties under low-temperature treatment,identified the crucial indicators that can reflect the ability of hulless barley to tolerate low-temperature,and evaluated the ability of different hulless barley varieties to tolerate low-temperature.The results indicated significant differences in the agronomic and physiological indicators of 60 hul-less barley varieties subjected to low-temperature treatment.Most of the agronomic indicators significantly decreased,whereas most of the physiological indicators significantly increased.However,the magnitude of changes in each agronomic and physiological indicator differed among the varieties.A comprehensive analysis of the agronomic and physiological indicators revealed that the antioxidant enzyme activity,soluble sugar(SSC)and free proline(FPRO)could be used as a crucial indicator to evaluate the low-temperature tolerance of hulless barley.Compared with those of agronomic indicators,the physiological indicators of the hulless variety barley better reflected its resistance to low-temperature stress.Thefinal comprehensive evaluation showed that Himalaya 22 was the most tolerant to low-temperature,whereas Changmanglan qingke was the most sensitive to low-temperature.In this study,we assessed various agronomic and physiological indicators of hulless barley plants under low-temperature stress.We also identified essential agronomic and physiological indicators for screening low-temperature-tolerant varieties.The research results thus provide a reference for screening low-tem-perature-tolerant hulless barley resources.展开更多
The rice Dongfu 159 was used for the potting experiment to simulate soil cadmium(Cd)stress,and four silicon preparations,Si-50-G and Si-60-G at a concentration of 0.20%and Si-T-G and Si-E-G at a concentration of 0.50%...The rice Dongfu 159 was used for the potting experiment to simulate soil cadmium(Cd)stress,and four silicon preparations,Si-50-G and Si-60-G at a concentration of 0.20%and Si-T-G and Si-E-G at a concentration of 0.50%,were applied at the tillering stage and booting stage of rice,respectively.The cadmium content,root vitality,root malondialdehyde(MDA)content,and antioxidant enzyme activity of each part of rice plants were determined,in order to provide a theoretical reference for exploring the mechanism of silicon fertilizer on the mitigation of Cd-stressed plants.The results showed that under the condition of cadmium stress,silicon application could significantly increase the root vitality and antioxidant enzyme activity,reduce the content of MDA,and reduce the accumulation of cadmium in various parts of rice.The treatment of Si-T-G applied at the tillering stage was the most effective in increasing the root vitality of rice,which was significantly increased by 63.00%compared with the CK.The treatment of Si-50-G applied at the stage of booting was the most effective in reducing MDA content of rice roots,which was significantly reduced by 30.16%compared with the CK.The treatment of Si-60-G applied at the stage of booting was the most effective in increasing the root superoxide dismutase(SOD)activity,which was significantly increased by 39.36%compared with the CK.The treatment of Si-60-G applied at the tillering stage was the most effective in increasing the root peroxidase(POD)and catalase(CAT)activities,which were significantly increased by 64.66%and 51.52%,respectively,compared with the CK.The treatment of Si-T-G applied at the tillering stage was the most effective in reducing Cd content of rice roots,stems and grains,which were significantly reduced by 39.53%,61.19%and 43.41%,respectively,compared with the CK,and the treatment of Si-60-G was the most effective in reducing Cd content of leaves,which was significantly reduced by 53.40%compared with the CK.展开更多
Climate change has caused fluctuations in the frequency and severity of droughts,favoring extended periods of drought associated with anthropic actions and triggering other stressful abiotic effects that threaten terr...Climate change has caused fluctuations in the frequency and severity of droughts,favoring extended periods of drought associated with anthropic actions and triggering other stressful abiotic effects that threaten terrestrial ecosystems.As climate warming intensifies,drought is a major challenge for forest growth.Pine(Pinus Linn.)is an important genus of forest in the Northern Hemisphere and has a certain tolerance to drought.This article analyzes and reviews the advances in research about drought stress of major Pinus spp.plants in recent years and discusses understanding and future core problems.To adapt to water-deficient environments,pine plants adapt to drought by changing growth traits,closing some stomata on leaves,changing the growth and structure of roots,and adjusting their physiological activities.Moreover,the expression of specific genes is altered,causing changes in the expression of several signaling molecules and metabolites to counteract drought stress.展开更多
BACKGROUND Postoperative complications remain a paramount concern for surgeons and healthcare practitioners.AIM To present a comprehensive analysis of the Estimation of Physiologic Ability and Surgical Stress(E-PASS)s...BACKGROUND Postoperative complications remain a paramount concern for surgeons and healthcare practitioners.AIM To present a comprehensive analysis of the Estimation of Physiologic Ability and Surgical Stress(E-PASS)scoring system’s efficacy in predicting postoperative complications following abdominal surgery.METHODS A systematic search of published studies was conducted,yielding 17 studies with pertinent data.Parameters such as preoperative risk score(PRS),surgical stress score(SSS),comprehensive risk score(CRS),postoperative complications,post-operative mortality,and other clinical data were collected for meta-analysis.Forest plots were employed for continuous and binary variables,withχ2 tests assessing heterogeneity(P value).RESULTS Patients experiencing complications after abdominal surgery exhibited significantly higher E-PASS scores compared to those without complications[mean difference and 95%confidence interval(CI)of PRS:0.10(0.05-0.15);SSS:0.04(0.001-0.08);CRS:0.19(0.07-0.31)].Following the exclusion of low-quality studies,results remained valid with no discernible heterogeneity.Subgroup analysis indicated that variations in sample size and age may contribute to hetero-geneity in CRS analysis.Binary variable meta-analysis demonstrated a correlation between high CRS and increased postoperative complication rates[odds ratio(OR)(95%CI):3.01(1.83-4.95)],with a significant association observed between high CRS and postoperative mortality[OR(95%CI):15.49(3.75-64.01)].CONCLUSION In summary,postoperative complications in abdominal surgery,as assessed by the E-PASS scoring system,are consistently linked to elevated PRS,SSS,and CRS scores.High CRS scores emerge as risk factors for heightened morbidity and mortality.This study establishes the accuracy of the E-PASS scoring system in predicting postoperative morbidity and mortality in abdominal surgery,underscoring its potential for widespread adoption in effective risk assessment.展开更多
Previous studies have shown that water stress can stimulate biosynthesis of secondary metabolites,and physiological and biochemical characteristics of plant can play a key role in its defense responses to water stress...Previous studies have shown that water stress can stimulate biosynthesis of secondary metabolites,and physiological and biochemical characteristics of plant can play a key role in its defense responses to water stress.So the physiological and biochemical characteristics of potted Scutellaria baicalensis Georgi plants were investigated under continuous water stress condition.The results showed that the water content in roots,stems and leaves,together with chlorophyll content of the leaves decreased as the water stress strengthened.Simultaneously,the specific leaf weight increased,and the content of proline and soluble sugar in Scutellaria baicalensis Georgi leaves increased significantly.The changing trends of the baicalin content in the roots,stems and leaves of Scutellaria baicalensis Georgi were different.It increased continuously in roots,while ascended constantly in the stems and leaves during the early days under the water stress,but decreased sharply under the heavy stress.In conclusion,proline and soluble sugar had a close correlation with the drought resistance of Scutellaria baicalensis Georgi.Moderate drought is in favor of synthesizing the secondary metabolites.展开更多
[Objective] The paper was to study the effect of low temperature stress on physiological and biochemical characteristics of Podocarpus nagi. [Method] Through the determination of physiological indices such as plasma m...[Objective] The paper was to study the effect of low temperature stress on physiological and biochemical characteristics of Podocarpus nagi. [Method] Through the determination of physiological indices such as plasma membrane permeability, free proline content, soluble sugar content, malondialdehyde (MDA) content and chlorophyll content, the change law of these indices of P. nagi seedlings under natural conditions and artificially controlled low temperature conditions within the continuous 5 d was studied. [Result] The soluble sugar content, free proline content, MDA content and plasma membrane permeability of P. nagi seedlings were slightly in- creased compared with control; the chlorophyll content gradually decreased with the prolongation of low temperature stress. P. nagi seedlings produced active response to low temperature stress, so the low temperature injury P. nagi seedlings suffered was reduced. [Conclusion] The study provided theoretical basis for winter management in P. nagi cultivation in Hanjiang plain area.展开更多
[Objective] The aim of this study was to screen drought-tolerant Brassica napus L. germplasm resources by analyzing their physiological and biochemical changes under drought stress. [Method] Forty varieties of B. napu...[Objective] The aim of this study was to screen drought-tolerant Brassica napus L. germplasm resources by analyzing their physiological and biochemical changes under drought stress. [Method] Forty varieties of B. napus varieties were cultured under PEG-6000 osmotic stress and extreme drought stress in pots, re- spectively. Then, the contents of chlorophyll, carotenoid, proline, malondialdehyde (MDA), soluble sugar, soluble protein, and the activities of superoxide dismutase (SOD), catalase(CAT), peroxidase(POD) were measured under drought stress. [Result] Sever- al drought-tolerant varieties of B. napus were screened out: YAU200908, Xiangyou No.15, YAU200903, YAU200907, YAU200906 and YAU200904. Physiological and biochemical analysis showed that, the contents of chlorophyll and carotenoid de- creased with drought stress increasing; the contents of proline, soluble sugar, solu- ble protein, MDA and the activities of SOD,CAT, POD raised with drought stress in- creasing. [Conclusion] In the rapeseed varieties with stronger drought tolerance, the decrease in carotenoid content and the increase in proline content, soluble sugar content, MDA content, SOD activity, CAT activity were more obvious, so all these physiological and biochemical indices can be used to evaluate the drought tolerance of rapeseed.展开更多
[Objective] This study aimed to investigate the effects of different concen- trations of antimony and modifier calcium magnesium phosphate on photosynthetic characteristics of edible amaranth, flowering Chinese cabbag...[Objective] This study aimed to investigate the effects of different concen- trations of antimony and modifier calcium magnesium phosphate on photosynthetic characteristics of edible amaranth, flowering Chinese cabbage, spinach and flowering Chinese cabbage. [Method] By outdoor potting simulation experiment, soil matrixes containing 10.00, 20.00, 50.00, 70.00 and 100.00 mg/kg antimony (Sb3+) were pre- pared; soil without antimony was used as control (CK). Each pot was loaded with 0.10 kg/kg vegetable special fertilizer, mixed evenly, and divided into two shares: one share was supplemented with 1.75 g/kg modifier calcium magnesium phosphate and mixed evenly; the other share contained no calcium magnesium phosphate. Af- ter the generation of three true leaves, seedlings with uniform growth were trans- planted into the prepared soil matrixes, eights seedlings per pot. Vegetable seedlings were watered regularly to maintain 70% of field capacity. After 45 d, veg- etable plants were harvested and washed clean with distilled water for measurement of indicators of photosynthetic characteristics. [Result] With the increase of antimony concentration, relative chlorophyll content (SPAD value) and net photosynthetic rate of four vegetable species increased first and then declined, while stomatal conduc- tance of vegetable leaves was linearly reduced. [Conclusion] Appropriately adding modifier calcium magnesium phosphate can effectively improve the photosynthetic characteristics of four vegetable species and reduce the toxic effects of heavy metal antimony on vegetables.展开更多
The paper was to study the change trend of the physiological indexes in plants of Malvaceae under normal and low temperature condition.The result showed that the increase extent of electrical conductivity of plants wi...The paper was to study the change trend of the physiological indexes in plants of Malvaceae under normal and low temperature condition.The result showed that the increase extent of electrical conductivity of plants with cold tolerance in Malvaceae was significantly lower than the plant without cold tolerance under the cold stress condition,while their proline contents and soluble protein contents were all higher than the plants without cold tolerance.The above physiological indicators all can be used for the screening of varieties with cold tolerance in Malvaceae,which will also provide theoretical guidance for the cold tolerance screening of other garden plants.展开更多
The effects of nitrogen on physiological and biochemical characteristics of potato cultivar Zihuabai under NaCl stress were studied in culture condition.The results show that,under NaCl stress,the contents of proline,...The effects of nitrogen on physiological and biochemical characteristics of potato cultivar Zihuabai under NaCl stress were studied in culture condition.The results show that,under NaCl stress,the contents of proline,chlorophyll and protein and root system vitality first increase and then decrease with the increase of nitrogen level,and reach the top under 4.17 mmol/L NH4NO3 level.Wherein,the contents of chlorophyll,protein and root system vitality are respectively 69.88%,13.07% and 59.29% higher than that of the control under 4.17 mmol/L NH4NO3 level;the activities of superoxide dismutase(SOD)and peroxidase(POD)increase generally under NaCl stress with the increase of nitrogen level,and reach the peaks [111.83 U/g and 25.467 U/(g·min)],which are 37.73% and 35.46% higher than that of control,at 6.25 mmol/L NH4NO3 level.展开更多
[Objective] The aim was to explore physiological responses of Brazil banana seedlings to drought stress simulated by PEG-6000.[Method] Brazil banana (Musa AAA Cavendish subgroup cv.Brazil) was taken as test material...[Objective] The aim was to explore physiological responses of Brazil banana seedlings to drought stress simulated by PEG-6000.[Method] Brazil banana (Musa AAA Cavendish subgroup cv.Brazil) was taken as test materials to explore changes of physiological indices of banana seedlings under drought stresses simulated by PEG-6000,including three stress levels (5%,10% and 15%) and time periods (24,48 and 72 h).[Result] Relative water content and chlorophyll content both declined under different stress levels and in different times.The content of proline (Pro) in seedling leaves from high to low was PEG15%,PEG10% and PEG5%; the content of treatment of 5% stress in 24 h was of insignificant differences with that of the control and the contents in rest treatments were all remarkably higher compared with the control.POD activities of seedling leaves from high to low were as follows:PEG15%>PEG10%>PEG5%,and POD activity was of significant differences among treatments; POD activity achieved the peak in treatment group with 5% of stress,and POD activities of different groups were all higher compared with the control.The activity of root system in treatment groups with PEG at different concentrations was as follows:PEG10%>PEG15%>PEG5% and the activity increased remarkably in the group with PEG at 5% within 24,48 and 72 h,though the activity dropped significantly within 72 h and slowly in 24 and 48 h.[Conclusion] It can be concluded that relative water content,chlorophyll content,Pro content and activity and root activity can be references of banana resistance to drought.展开更多
The plant growth and physiological and biochemical responses of root and leaves of grape Yinhong seedlings to the weak lights of 20 000,16 000,12 000,8 000 lx and the normal illumination of 25 000 lx(CK) respectivel...The plant growth and physiological and biochemical responses of root and leaves of grape Yinhong seedlings to the weak lights of 20 000,16 000,12 000,8 000 lx and the normal illumination of 25 000 lx(CK) respectively,were investigated.There was no significant dfference in growth indexes of root and leaves of grapevine seedlings between the light of 20 000 lx and CK,and the light of 16 000 lx and CK for 30 d.The chlorophyll contents,soluble protein contents,net photosynthetic rates,transpiration rates,stomatal conductance,water use efficiency and protective enzyme(CAT,POD,SOD) activities in the leaves under the lights of 20 000 lx and 16 000 lx for 30 d were all higher than those under the lights of 20 000 lx and 16 000 lx for 1 d.Under the light of 8 000 lx for 30 d,the growth indexes of root and leaves of grapevine seedlings were significantly lower than those of CK,and except for MDA content,most physiological and biochemical indexes of the leaves were significantly lower than those under the light of 8 000 lx for 1 d.Under12 000 lx,the values of most growth indexes in root and leaves and physiological and biochemical indexes in leaves were between the 16 000 lx and 8 000 lx.In conclusion,Yinhong could grow under the lights above 16 000 lx,and would be stunted by the weak light below 8 000 lx.展开更多
文摘Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspects of plants’growth and metabolism.In response to this adversity,medicinal plants employ mechanisms such as morphological and structural adjustments,modulation of drought-resistant genes,and augmented synthesis of secondary metabolites and osmotic regulatory substances to alleviate the stress.Extreme water scarcity can lead to leaf wilting and may ultimately result in plant death.The cultivation and management of medicinal plants under stress conditions often differ from those of other crops.This is because the main goal with medicinal plants is not only to increase the yield of the above-ground parts but also to enhance the production of active ingredients such as essential oils.To elucidate these mechanisms of drought resistance in medicinal and aromatic plants,the current review provides a summary of recent literature encompassing studies on the morphology,physiology,and biochemistry of medicinal and aromatic plants under drought conditions.
基金supported by the National Natural Science Foundation of China (Grant Nos.32100283 and 32071932)the Xinjiang ‘Tianchi Talent’ Recruitment Program, China。
文摘Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of Cd in agricultural crops constitutes a primary vector for its entry into the human diet. This issue warrants urgent attention from both the scientific community and policymakers to develop and implement effective mitigation strategies. This review delves into the physiological impacts of Cd stress on plants, including the suppression of photosynthetic activity, amplification of oxidative stress, and disruptions in mineral nutrient homeostasis. Additionally, the resistance mechanisms deployed by plants in response to Cd stress have been explored, and the prospective contributions of molecular breeding strategies in augmenting crop tolerance to Cd and minimizing its bioaccumulation have been assessed. By integrating and analyzing these findings, we seek to inform future research trajectories and proffer strategic approaches to enhance agricultural sustainability, safeguard human health, and protect environmental integrity.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFD1000400)Innovative Program for Graduate Student of Qingdao Agricultural University(Grant No.QNYCX22045).
文摘Drought(water shortage)can substantially limit the yield and economic value of rose plants(Rosa spp.).Here,we characterized the effect of exogenous calcium(Ca^(2+))on the antioxidant system and photosynthesis-related properties of rose under polyethylene glycol 6000(PEG6000)-induced drought stress.Chlorophyll levels,as well as leaf and root biomass,were significantly reduced by drought;drought also had a major effect on the enzymatic antioxidant system and increased concentrations of reactive oxygen species.Application of exogenous Ca^(2+)increased the net photosynthetic rate and stomatal conductance of leaves,enhanced water-use efficiency,and increased the length and width of stomata following exposure to drought.Organ-specific physiological responses were observed under different concentrations of Ca^(2+).Application of 5 mmol·L^(-1)Ca^(2+)promoted photosynthesis and antioxidant activity in the leaves,and application of 10 mmol·L^(-1)Ca^(2+)promoted antioxidant activity in the roots.Application of exogenous Ca^(2+)greatly enhanced the phenotype and photosynthetic capacity of potted rose plants following exposure to drought stress.Overall,our findings indicate that the application of exogenous Ca^(2+)enhances the drought resistance of roses by promoting physiological adaptation and that it could be used to aid the cultivation of rose plants.
基金the Key Program of Hubei Province,Grant Number 2023BBA043.
文摘The objective of this study was to explain the physiological mechanisms through which Na_(2)SeO_(3) mitigates the growth and developmental inhibition of pakchoi under HgCl_(2)stress.The results showed that treatment with HgCl_(2)(40 mg L^(−1))led to reduced biomass,dwarfing,root shortening,and root tip necrosis in pakchoi.Compared to control(CK),the activities of superoxide dismutase(SOD)and peroxidase(POD)in Hg treatment increased,and the content of malondialdehyde(MDA)also dramatically increased,which negatively impacted the growth of pakchoi.Low concentrations of Na_(2)SeO_(3)(0.2 mg L^(−1))significantly increased the content of soluble sugars compared with control,while chlorophyll,soluble proteins,free amino acids,and vitamin C had no significant changes.The results of the mixed treatments with HgCl_(2)and Na_(2)SeO_(3) suggested that selenium may be able to reduce the toxicity of mercury in pakchoi.The biomass,plant height,root length,chlorophyll content,soluble protein,other physiological indicators,and proline showed significant increases compared with the HgCl_(2)treatment.Additionally,the MDA content and mercury accumulation in pakchoi decreased.Our results revealed the antagonistic effects of selenium and mercury in pakchoi.Thus,a theoretical basis for studying pakchoi’s mercuryexcreted and selenium-rich cultivation technology was provided.
基金supported jointly by the Science and Technology Project of Guizhou Province(Qian-Ke-He Platform Talents[2021]5624)the National Natural Science Foundation of China(31960576)Science and Technology Project of Guizhou Province(Qian-Ke-He Support[2021]General 228)were funded.
文摘In order to explore the response mechanism of Passiflora edulis Sims to drought stress,the changes in morpho-logical and physiological traits of Passiflora edulis Sims under different drought conditions were studied.A total of 7 germplasm resources of Passiflora edulis Sims were selected and tested under drought stress by the pot culture method under 4 treatment levels:75%–80%(Control,CK)of maximumfield water capacity,55%–60%(Light Drought,LD)of maximumfield water capacity,i.e.,mild drought,40%–45%(Moderate Drought,MD)of max-imumfield water capacity,i.e.,moderate drought and 30%–35%(Severe Drought,SD)of maximumfield water capacity,i.e.,severe drought.On the 40th day of drought treatment,13 indices,including seedling growth mor-phology,physiology,and biochemistry,were measured.The results showed that under drought stress,the height and ground diameter of P.edulis Sims gradually decreased with increasing drought stress,and there were signifi-cant differences in seedling height and ground diameter among the treatments.Drought stress significantly inhib-ited the growth of seven P.edulis Sims varieties.The contents of soluble sugar(SS),soluble protein(SP),proline(Pro),and other substances in P.edulis Sims basically increased with increasing drought stress.With the aggrava-tion of drought stress,the malondialdehyde(MDA)content of P.edulis Sims tended to increase to different degrees,the superoxide dismutase(SOD)activity and peroxidase(POD)activity both tended to increase atfirst and then decrease,and the change in catalase(CAT)activity mostly showed a gradual increasing trend.The con-tents of endogenous hormones in P.edulis Sims significantly differed under different degrees of drought stress.With the aggravation of drought stress,the abscisic acid(ABA)content of P.edulis Sims tended to increase,whereas the contents of gibberellin(GA),indoleacetic acid(IAA),and zeatin nucleoside(ZR)exhibited a down-ward trend.A comprehensive evaluation of the drought resistance of seven P.edulis Sims varieties was conducted based on the principal component analysis method,and the results showed that the drought resistance decreased in the order XH-BL>XH-TWZ>TN1>GH1>ZJ-MT>LP-LZ>DH-JW.
基金This research was supported by National Natural Science Foundation of China(NSFC)(32060423)the Open Project of State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University(2023-ZZ-01)+2 种基金National Natural Science Foundation of China(NSFC),Key Program of Regional Innovation and Development Joint Fund(U22A20453)Qinghai University Natural Science Foundation for Young Scholars(2022-QNY-3)Innovation Fund of Qinghai Academy of Agricultural and Forestry Sciences(2022-NKY-04).
文摘In this study,we analyzed the agronomic and physiological indicators of the leaves and roots of 60 hulless barley varieties under low-temperature treatment,identified the crucial indicators that can reflect the ability of hulless barley to tolerate low-temperature,and evaluated the ability of different hulless barley varieties to tolerate low-temperature.The results indicated significant differences in the agronomic and physiological indicators of 60 hul-less barley varieties subjected to low-temperature treatment.Most of the agronomic indicators significantly decreased,whereas most of the physiological indicators significantly increased.However,the magnitude of changes in each agronomic and physiological indicator differed among the varieties.A comprehensive analysis of the agronomic and physiological indicators revealed that the antioxidant enzyme activity,soluble sugar(SSC)and free proline(FPRO)could be used as a crucial indicator to evaluate the low-temperature tolerance of hulless barley.Compared with those of agronomic indicators,the physiological indicators of the hulless variety barley better reflected its resistance to low-temperature stress.Thefinal comprehensive evaluation showed that Himalaya 22 was the most tolerant to low-temperature,whereas Changmanglan qingke was the most sensitive to low-temperature.In this study,we assessed various agronomic and physiological indicators of hulless barley plants under low-temperature stress.We also identified essential agronomic and physiological indicators for screening low-temperature-tolerant varieties.The research results thus provide a reference for screening low-tem-perature-tolerant hulless barley resources.
基金Supported by the National Natural Science Foundation of China(31340032)。
文摘The rice Dongfu 159 was used for the potting experiment to simulate soil cadmium(Cd)stress,and four silicon preparations,Si-50-G and Si-60-G at a concentration of 0.20%and Si-T-G and Si-E-G at a concentration of 0.50%,were applied at the tillering stage and booting stage of rice,respectively.The cadmium content,root vitality,root malondialdehyde(MDA)content,and antioxidant enzyme activity of each part of rice plants were determined,in order to provide a theoretical reference for exploring the mechanism of silicon fertilizer on the mitigation of Cd-stressed plants.The results showed that under the condition of cadmium stress,silicon application could significantly increase the root vitality and antioxidant enzyme activity,reduce the content of MDA,and reduce the accumulation of cadmium in various parts of rice.The treatment of Si-T-G applied at the tillering stage was the most effective in increasing the root vitality of rice,which was significantly increased by 63.00%compared with the CK.The treatment of Si-50-G applied at the stage of booting was the most effective in reducing MDA content of rice roots,which was significantly reduced by 30.16%compared with the CK.The treatment of Si-60-G applied at the stage of booting was the most effective in increasing the root superoxide dismutase(SOD)activity,which was significantly increased by 39.36%compared with the CK.The treatment of Si-60-G applied at the tillering stage was the most effective in increasing the root peroxidase(POD)and catalase(CAT)activities,which were significantly increased by 64.66%and 51.52%,respectively,compared with the CK.The treatment of Si-T-G applied at the tillering stage was the most effective in reducing Cd content of rice roots,stems and grains,which were significantly reduced by 39.53%,61.19%and 43.41%,respectively,compared with the CK,and the treatment of Si-60-G was the most effective in reducing Cd content of leaves,which was significantly reduced by 53.40%compared with the CK.
基金the National Natural Science Foundation of China(31960301)the Guizhou Provincial Characteristic Key Laboratory(QJHKY[2021]002).
文摘Climate change has caused fluctuations in the frequency and severity of droughts,favoring extended periods of drought associated with anthropic actions and triggering other stressful abiotic effects that threaten terrestrial ecosystems.As climate warming intensifies,drought is a major challenge for forest growth.Pine(Pinus Linn.)is an important genus of forest in the Northern Hemisphere and has a certain tolerance to drought.This article analyzes and reviews the advances in research about drought stress of major Pinus spp.plants in recent years and discusses understanding and future core problems.To adapt to water-deficient environments,pine plants adapt to drought by changing growth traits,closing some stomata on leaves,changing the growth and structure of roots,and adjusting their physiological activities.Moreover,the expression of specific genes is altered,causing changes in the expression of several signaling molecules and metabolites to counteract drought stress.
基金Supported by Medical Science and Technology Project of Zhejiang Province of China,No.2020PY053.
文摘BACKGROUND Postoperative complications remain a paramount concern for surgeons and healthcare practitioners.AIM To present a comprehensive analysis of the Estimation of Physiologic Ability and Surgical Stress(E-PASS)scoring system’s efficacy in predicting postoperative complications following abdominal surgery.METHODS A systematic search of published studies was conducted,yielding 17 studies with pertinent data.Parameters such as preoperative risk score(PRS),surgical stress score(SSS),comprehensive risk score(CRS),postoperative complications,post-operative mortality,and other clinical data were collected for meta-analysis.Forest plots were employed for continuous and binary variables,withχ2 tests assessing heterogeneity(P value).RESULTS Patients experiencing complications after abdominal surgery exhibited significantly higher E-PASS scores compared to those without complications[mean difference and 95%confidence interval(CI)of PRS:0.10(0.05-0.15);SSS:0.04(0.001-0.08);CRS:0.19(0.07-0.31)].Following the exclusion of low-quality studies,results remained valid with no discernible heterogeneity.Subgroup analysis indicated that variations in sample size and age may contribute to hetero-geneity in CRS analysis.Binary variable meta-analysis demonstrated a correlation between high CRS and increased postoperative complication rates[odds ratio(OR)(95%CI):3.01(1.83-4.95)],with a significant association observed between high CRS and postoperative mortality[OR(95%CI):15.49(3.75-64.01)].CONCLUSION In summary,postoperative complications in abdominal surgery,as assessed by the E-PASS scoring system,are consistently linked to elevated PRS,SSS,and CRS scores.High CRS scores emerge as risk factors for heightened morbidity and mortality.This study establishes the accuracy of the E-PASS scoring system in predicting postoperative morbidity and mortality in abdominal surgery,underscoring its potential for widespread adoption in effective risk assessment.
基金Supported by Agricultural Seed Project in Shandong Province Research in Screening Varieties of Bulk Authentic Chinese Herbal Medicines(NO.2005LZ08-01)Special Issues of Major Technologyin Shandong Province(NO.2006GGll09078)~~
文摘Previous studies have shown that water stress can stimulate biosynthesis of secondary metabolites,and physiological and biochemical characteristics of plant can play a key role in its defense responses to water stress.So the physiological and biochemical characteristics of potted Scutellaria baicalensis Georgi plants were investigated under continuous water stress condition.The results showed that the water content in roots,stems and leaves,together with chlorophyll content of the leaves decreased as the water stress strengthened.Simultaneously,the specific leaf weight increased,and the content of proline and soluble sugar in Scutellaria baicalensis Georgi leaves increased significantly.The changing trends of the baicalin content in the roots,stems and leaves of Scutellaria baicalensis Georgi were different.It increased continuously in roots,while ascended constantly in the stems and leaves during the early days under the water stress,but decreased sharply under the heavy stress.In conclusion,proline and soluble sugar had a close correlation with the drought resistance of Scutellaria baicalensis Georgi.Moderate drought is in favor of synthesizing the secondary metabolites.
基金Supported by Doctoral Starting Fund of Yangtze University(801190010105)~~
文摘[Objective] The paper was to study the effect of low temperature stress on physiological and biochemical characteristics of Podocarpus nagi. [Method] Through the determination of physiological indices such as plasma membrane permeability, free proline content, soluble sugar content, malondialdehyde (MDA) content and chlorophyll content, the change law of these indices of P. nagi seedlings under natural conditions and artificially controlled low temperature conditions within the continuous 5 d was studied. [Result] The soluble sugar content, free proline content, MDA content and plasma membrane permeability of P. nagi seedlings were slightly in- creased compared with control; the chlorophyll content gradually decreased with the prolongation of low temperature stress. P. nagi seedlings produced active response to low temperature stress, so the low temperature injury P. nagi seedlings suffered was reduced. [Conclusion] The study provided theoretical basis for winter management in P. nagi cultivation in Hanjiang plain area.
基金Supported by Rapeseed Industry Construction Program of Department of Agriculture of Yunnan ProvinceFund for Workstation of Academician Guan Chunyun from Department of Science and Technology of Yunnan Province~~
文摘[Objective] The aim of this study was to screen drought-tolerant Brassica napus L. germplasm resources by analyzing their physiological and biochemical changes under drought stress. [Method] Forty varieties of B. napus varieties were cultured under PEG-6000 osmotic stress and extreme drought stress in pots, re- spectively. Then, the contents of chlorophyll, carotenoid, proline, malondialdehyde (MDA), soluble sugar, soluble protein, and the activities of superoxide dismutase (SOD), catalase(CAT), peroxidase(POD) were measured under drought stress. [Result] Sever- al drought-tolerant varieties of B. napus were screened out: YAU200908, Xiangyou No.15, YAU200903, YAU200907, YAU200906 and YAU200904. Physiological and biochemical analysis showed that, the contents of chlorophyll and carotenoid de- creased with drought stress increasing; the contents of proline, soluble sugar, solu- ble protein, MDA and the activities of SOD,CAT, POD raised with drought stress in- creasing. [Conclusion] In the rapeseed varieties with stronger drought tolerance, the decrease in carotenoid content and the increase in proline content, soluble sugar content, MDA content, SOD activity, CAT activity were more obvious, so all these physiological and biochemical indices can be used to evaluate the drought tolerance of rapeseed.
基金Supported by Fund of Director of Hunan Institute of HorticultureProject for Cultivation Post in Citrus Industry System of Hunan Province(2013)~~
文摘[Objective] This study aimed to investigate the effects of different concen- trations of antimony and modifier calcium magnesium phosphate on photosynthetic characteristics of edible amaranth, flowering Chinese cabbage, spinach and flowering Chinese cabbage. [Method] By outdoor potting simulation experiment, soil matrixes containing 10.00, 20.00, 50.00, 70.00 and 100.00 mg/kg antimony (Sb3+) were pre- pared; soil without antimony was used as control (CK). Each pot was loaded with 0.10 kg/kg vegetable special fertilizer, mixed evenly, and divided into two shares: one share was supplemented with 1.75 g/kg modifier calcium magnesium phosphate and mixed evenly; the other share contained no calcium magnesium phosphate. Af- ter the generation of three true leaves, seedlings with uniform growth were trans- planted into the prepared soil matrixes, eights seedlings per pot. Vegetable seedlings were watered regularly to maintain 70% of field capacity. After 45 d, veg- etable plants were harvested and washed clean with distilled water for measurement of indicators of photosynthetic characteristics. [Result] With the increase of antimony concentration, relative chlorophyll content (SPAD value) and net photosynthetic rate of four vegetable species increased first and then declined, while stomatal conduc- tance of vegetable leaves was linearly reduced. [Conclusion] Appropriately adding modifier calcium magnesium phosphate can effectively improve the photosynthetic characteristics of four vegetable species and reduce the toxic effects of heavy metal antimony on vegetables.
基金Supported by Research Project in Shanghai Green(Forest)Authority(G060317)~~
文摘The paper was to study the change trend of the physiological indexes in plants of Malvaceae under normal and low temperature condition.The result showed that the increase extent of electrical conductivity of plants with cold tolerance in Malvaceae was significantly lower than the plant without cold tolerance under the cold stress condition,while their proline contents and soluble protein contents were all higher than the plants without cold tolerance.The above physiological indicators all can be used for the screening of varieties with cold tolerance in Malvaceae,which will also provide theoretical guidance for the cold tolerance screening of other garden plants.
基金Supported by National Key Technology Research and Development Program(2007BAD49B03-1)~~
文摘The effects of nitrogen on physiological and biochemical characteristics of potato cultivar Zihuabai under NaCl stress were studied in culture condition.The results show that,under NaCl stress,the contents of proline,chlorophyll and protein and root system vitality first increase and then decrease with the increase of nitrogen level,and reach the top under 4.17 mmol/L NH4NO3 level.Wherein,the contents of chlorophyll,protein and root system vitality are respectively 69.88%,13.07% and 59.29% higher than that of the control under 4.17 mmol/L NH4NO3 level;the activities of superoxide dismutase(SOD)and peroxidase(POD)increase generally under NaCl stress with the increase of nitrogen level,and reach the peaks [111.83 U/g and 25.467 U/(g·min)],which are 37.73% and 35.46% higher than that of control,at 6.25 mmol/L NH4NO3 level.
文摘[Objective] The aim was to explore physiological responses of Brazil banana seedlings to drought stress simulated by PEG-6000.[Method] Brazil banana (Musa AAA Cavendish subgroup cv.Brazil) was taken as test materials to explore changes of physiological indices of banana seedlings under drought stresses simulated by PEG-6000,including three stress levels (5%,10% and 15%) and time periods (24,48 and 72 h).[Result] Relative water content and chlorophyll content both declined under different stress levels and in different times.The content of proline (Pro) in seedling leaves from high to low was PEG15%,PEG10% and PEG5%; the content of treatment of 5% stress in 24 h was of insignificant differences with that of the control and the contents in rest treatments were all remarkably higher compared with the control.POD activities of seedling leaves from high to low were as follows:PEG15%>PEG10%>PEG5%,and POD activity was of significant differences among treatments; POD activity achieved the peak in treatment group with 5% of stress,and POD activities of different groups were all higher compared with the control.The activity of root system in treatment groups with PEG at different concentrations was as follows:PEG10%>PEG15%>PEG5% and the activity increased remarkably in the group with PEG at 5% within 24,48 and 72 h,though the activity dropped significantly within 72 h and slowly in 24 and 48 h.[Conclusion] It can be concluded that relative water content,chlorophyll content,Pro content and activity and root activity can be references of banana resistance to drought.
基金Supported by Science and Technology Innovation Team Project of Ningbo Province of China(2011B82019)Supported by Natural Science Foundation of Ningbo Province of China(Y13C150014)+1 种基金Supported by Foundation of Zhejiang Educational Committee(2011C32008)Supported by Science and Technology Project of Ningbo Province,China(2010C91049)~~
文摘The plant growth and physiological and biochemical responses of root and leaves of grape Yinhong seedlings to the weak lights of 20 000,16 000,12 000,8 000 lx and the normal illumination of 25 000 lx(CK) respectively,were investigated.There was no significant dfference in growth indexes of root and leaves of grapevine seedlings between the light of 20 000 lx and CK,and the light of 16 000 lx and CK for 30 d.The chlorophyll contents,soluble protein contents,net photosynthetic rates,transpiration rates,stomatal conductance,water use efficiency and protective enzyme(CAT,POD,SOD) activities in the leaves under the lights of 20 000 lx and 16 000 lx for 30 d were all higher than those under the lights of 20 000 lx and 16 000 lx for 1 d.Under the light of 8 000 lx for 30 d,the growth indexes of root and leaves of grapevine seedlings were significantly lower than those of CK,and except for MDA content,most physiological and biochemical indexes of the leaves were significantly lower than those under the light of 8 000 lx for 1 d.Under12 000 lx,the values of most growth indexes in root and leaves and physiological and biochemical indexes in leaves were between the 16 000 lx and 8 000 lx.In conclusion,Yinhong could grow under the lights above 16 000 lx,and would be stunted by the weak light below 8 000 lx.