Using naturally colored cotton(NCC)can eliminate dyeing,printing and industrial processing,and reduce sewage discharge and energy consumption.Proanthocyanidins(PAs),the primary coloration components in brown fibers,ar...Using naturally colored cotton(NCC)can eliminate dyeing,printing and industrial processing,and reduce sewage discharge and energy consumption.Proanthocyanidins(PAs),the primary coloration components in brown fibers,are polyphenols formed by oligomers or polymers of flavan-3-ol units derived from anthocyanidins.Three essential structural genes for flavanone and flavonoid hydroxylation encoding flavanone-3-hydroxylase(F3H),flavonoid 3’-hydroxylase(F3’H)and flavonoid 3’5’-hydroxylase(F3’5’H)are initially committed in the flavonoid biosynthesis pathway to produce common precursors.The three genes were all expressed predominantly in developing fibers of NCCs,and their expression patterns varied temporally and spatially among NCC varieties.In GhF3Hi,GhF3’Hi and GhF3’5’Hi silenced lines of NCC varieties XC20 and ZX1,the expression level of the three genes decreased in developing cotton fiber,negatively correlated with anthocyanidin content and fiber color depth.Fiber color depth and type in RNAi lines changed with endogenous gene silencing efficiency and expression pattern,the three hydroxylase genes functioned in fiber color formation.GhF3H showed functional differentiation among NCC varieties and GhF3’H acted in the accumulation of anthocyanin in fiber.Compared with GhF3’H,GhF3’5’H was expressed more highly in brown fiber with a longer duration of expression and caused lighter color of fibers in GhF3’5’H silenced lines.These three genes regulating fiber color depth and type could be used to improve these traits by genetic manipulation.展开更多
Plant architecture traits influence crop yield. An understanding of the genetic basis of cotton plant architecture traits is beneficial for identifying favorable alleles and functional genes and breeding elite cultiva...Plant architecture traits influence crop yield. An understanding of the genetic basis of cotton plant architecture traits is beneficial for identifying favorable alleles and functional genes and breeding elite cultivars. We collected 121 cotton accessions including 100 brownfiber and 21 white-fiber accessions, genotyped them by whole-genome resequencing, and phenotyped them in multiple environments. This genome-wide association study(GWAS)identified 11 quantitative trait loci(QTL) for two plant architecture traits: plant height and fruit spur branch number. Negative-effect alleles were enriched in the elite cultivars. Based on these QTL, gene annotation information, and published QTL, candidate genes and natural genetic variations in four QTL were identified. Ghir_D02 G017510 and Ghir_D02 G017600 were identified as candidate genes for qD02-FSBN-1, and a premature start codon gain variation was found in Ghir_D02 G017510. Ghir_A12 G026570, the candidate gene of qA12-FSBN-2, belongs to the pectin lyase-like superfamily, and a significantly associated SNP, A12_105366045(T/C), in this gene represents an amino acid change. The QTL, candidate genes, and associated natural variations in this study are expected to lay a foundation for studying functional genes and developing breeding programs for desirable architecture in brown-fiber cotton.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(LZ21C130004)the National Natural Science Foundation of China(U1903204)he Fundamental Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University(KYY2021004S)。
文摘Using naturally colored cotton(NCC)can eliminate dyeing,printing and industrial processing,and reduce sewage discharge and energy consumption.Proanthocyanidins(PAs),the primary coloration components in brown fibers,are polyphenols formed by oligomers or polymers of flavan-3-ol units derived from anthocyanidins.Three essential structural genes for flavanone and flavonoid hydroxylation encoding flavanone-3-hydroxylase(F3H),flavonoid 3’-hydroxylase(F3’H)and flavonoid 3’5’-hydroxylase(F3’5’H)are initially committed in the flavonoid biosynthesis pathway to produce common precursors.The three genes were all expressed predominantly in developing fibers of NCCs,and their expression patterns varied temporally and spatially among NCC varieties.In GhF3Hi,GhF3’Hi and GhF3’5’Hi silenced lines of NCC varieties XC20 and ZX1,the expression level of the three genes decreased in developing cotton fiber,negatively correlated with anthocyanidin content and fiber color depth.Fiber color depth and type in RNAi lines changed with endogenous gene silencing efficiency and expression pattern,the three hydroxylase genes functioned in fiber color formation.GhF3H showed functional differentiation among NCC varieties and GhF3’H acted in the accumulation of anthocyanin in fiber.Compared with GhF3’H,GhF3’5’H was expressed more highly in brown fiber with a longer duration of expression and caused lighter color of fibers in GhF3’5’H silenced lines.These three genes regulating fiber color depth and type could be used to improve these traits by genetic manipulation.
基金supported by the Fundamental Research Funds for the Central Universities(2662015PY097)the Breeding of New Early Maturing and High-quality Coloured Cotton Varieties(2016HZ09)
文摘Plant architecture traits influence crop yield. An understanding of the genetic basis of cotton plant architecture traits is beneficial for identifying favorable alleles and functional genes and breeding elite cultivars. We collected 121 cotton accessions including 100 brownfiber and 21 white-fiber accessions, genotyped them by whole-genome resequencing, and phenotyped them in multiple environments. This genome-wide association study(GWAS)identified 11 quantitative trait loci(QTL) for two plant architecture traits: plant height and fruit spur branch number. Negative-effect alleles were enriched in the elite cultivars. Based on these QTL, gene annotation information, and published QTL, candidate genes and natural genetic variations in four QTL were identified. Ghir_D02 G017510 and Ghir_D02 G017600 were identified as candidate genes for qD02-FSBN-1, and a premature start codon gain variation was found in Ghir_D02 G017510. Ghir_A12 G026570, the candidate gene of qA12-FSBN-2, belongs to the pectin lyase-like superfamily, and a significantly associated SNP, A12_105366045(T/C), in this gene represents an amino acid change. The QTL, candidate genes, and associated natural variations in this study are expected to lay a foundation for studying functional genes and developing breeding programs for desirable architecture in brown-fiber cotton.