The dynamics of two confined colloidal particles is studied by means of Brownian dynamics simulation. The autocorrelation function and cross-correlation function of the two colloidal spheres are computed by utilizing ...The dynamics of two confined colloidal particles is studied by means of Brownian dynamics simulation. The autocorrelation function and cross-correlation function of the two colloidal spheres are computed by utilizing the formulae of hydrodynamic diffusion matrix expanded to different orders, as well as the accurate tensor through numerical algorithm. Furthermore, the numerical results are compared with the experimental results and the theoretical approximation. It is found that the relatively simple theoretical approximation gives good predictions when two spheres are far away from each other, but fails when the two spheres are very close.展开更多
Brownian dynamics simulations are employed to explore the effects of chain stiffness and trivalent salt concentration on the conformational behavior of spherical polyelectrolyte brush. The rigid brush adopts bundle-li...Brownian dynamics simulations are employed to explore the effects of chain stiffness and trivalent salt concentration on the conformational behavior of spherical polyelectrolyte brush. The rigid brush adopts bundle-like morphology at a wide range of trivalent salt concentration. The number variation of bundles pinned on the colloid surface shows a non-monotonic profile as a function of the chain stiffness. The radial distributions of monomers and ions and the charge ratio between condensed ions and monomers are calculated. The charge inversion is observed for the high salt concentration regardless of chain rigidity. Furthermore, the pair correlation functions of monomer-monomer and monomer-salt cation are used to elucidate the aggregated mechanism of the bundle-like structure.展开更多
The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential mod...The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential model is introduced for describing the interactions between, micelles. In the model, the Lennard-Jones and the soft-sphere potentials are used as inter-bead potentials for end-end and interior-interior beads, respectively. The micelles are combined at their ends to form a network structure at lower shear rates and are disconnected to become more and more parallel to the shear flow direction with increasing shear rate. The change of micellar microstructures with the variation of the shear rate results in shear thinning characteristics of the computed shear viscosities and first normal stress difference coefficients. The effects of surfactant solution concentration on the micellar structures and rheological properties are also investigated. Results show that the shear viscosities and the first normal stress difference coefficients increase with increasing the viscosity of the surfactant solution.展开更多
By the so-called wormlike chain (WLC) model in polymer physics envision- ing an isotropic rod that is continuously flexible, the force-extension relations of semi- flexible polymer chains strongly constrained by var...By the so-called wormlike chain (WLC) model in polymer physics envision- ing an isotropic rod that is continuously flexible, the force-extension relations of semi- flexible polymer chains strongly constrained by various confinements are theoretically investigated, including a slab-like confinement where the polymer chains are sandwiched between two parallel impenetrable walls, and a capped nanochannel confinement with a circular or rectangular cross-section where the chains are bounded in three directions. The Brownian dynamics (BD) simulations based on the generalized bead-rod (GBR) model are performed to verify the theoretical predictions.展开更多
As an example of a very low friction system,Monte Carlo Brownian dynamics simulations have been used to calculate equilibrium structures of a polyelectrolyte brush grafted onto planes.The polymers were calculated in a...As an example of a very low friction system,Monte Carlo Brownian dynamics simulations have been used to calculate equilibrium structures of a polyelectrolyte brush grafted onto planes.The polymers were calculated in a semi-flexible coarse-grain model that is appropriate to treat the charge density of the polyion.The effect of linear charge density on the polyionx,the surface negative charge,and added salts were studied.In salt-free solution,scaling theories predicted the structure well in the lowxregion.In the highxregion,additional shrinkage was found from the theories due to counterion condensation.The effect of surface charge showed not only the repulsion of the polyion from the surface but also the shrinkage in the highxregion due to the additional counterions required for electrical neutrality.The addition of salts led to the shrinkage of the brush heights,and in the highxregion,additional extension was found.The computational strategy for calculating the friction dynamics of the system is also discussed.展开更多
Combining Brownian dynamics simulations and self-consistent field theory,we demonstrate that the architectural parameters of coreshell comb-like chains have a decisive influence on their final self-assembled conformat...Combining Brownian dynamics simulations and self-consistent field theory,we demonstrate that the architectural parameters of coreshell comb-like chains have a decisive influence on their final self-assembled conformations.When the ratio of hydrophilic and hydrophobic segments is N_(g,g)∶N_(g,r)=3∶1,no core-shell structure is observed,and unsegregated chains or clusters are substituted.When N_(g,g)∶N_(g,r)=3∶2or 3∶3,the core-shell comb-like chains can be assembled into single micelles or structures where several small micelles are strung together by the backbone,which is similar to the pearl-necklace structure formed by the polyelectrolytes in poor solvent.With the increase of backbone length or grafting density,the probability of forming single micelles becomes lower,but the structures of two,three or more small micelles strung together are more observed.Our results indicate how to obtain the desired self-assembled structures of core-shell comb-like chains by regulating the architectural parameters,which could provide insights for the optimization of molecular design in various applications.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10174041 and 10334020).
文摘The dynamics of two confined colloidal particles is studied by means of Brownian dynamics simulation. The autocorrelation function and cross-correlation function of the two colloidal spheres are computed by utilizing the formulae of hydrodynamic diffusion matrix expanded to different orders, as well as the accurate tensor through numerical algorithm. Furthermore, the numerical results are compared with the experimental results and the theoretical approximation. It is found that the relatively simple theoretical approximation gives good predictions when two spheres are far away from each other, but fails when the two spheres are very close.
基金financially supported by the National Natural Science Foundation of China (No. 21474005)the Fundamental Research Funds for the Central Universities (No. 3122016L011)
文摘Brownian dynamics simulations are employed to explore the effects of chain stiffness and trivalent salt concentration on the conformational behavior of spherical polyelectrolyte brush. The rigid brush adopts bundle-like morphology at a wide range of trivalent salt concentration. The number variation of bundles pinned on the colloid surface shows a non-monotonic profile as a function of the chain stiffness. The radial distributions of monomers and ions and the charge ratio between condensed ions and monomers are calculated. The charge inversion is observed for the high salt concentration regardless of chain rigidity. Furthermore, the pair correlation functions of monomer-monomer and monomer-salt cation are used to elucidate the aggregated mechanism of the bundle-like structure.
文摘The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential model is introduced for describing the interactions between, micelles. In the model, the Lennard-Jones and the soft-sphere potentials are used as inter-bead potentials for end-end and interior-interior beads, respectively. The micelles are combined at their ends to form a network structure at lower shear rates and are disconnected to become more and more parallel to the shear flow direction with increasing shear rate. The change of micellar microstructures with the variation of the shear rate results in shear thinning characteristics of the computed shear viscosities and first normal stress difference coefficients. The effects of surfactant solution concentration on the micellar structures and rheological properties are also investigated. Results show that the shear viscosities and the first normal stress difference coefficients increase with increasing the viscosity of the surfactant solution.
基金supported the National Natural Science Foundation of China(Nos.11032006,11072094,and11121202)the Ph.D.Program Foundation of Ministry of Education of China(No.20100211110022)+1 种基金the National Key Project of Magneto-Constrained Fusion Energy Development Program of China(No.2013GB110002)the Fundamental Research Funds for the Central Universities(No.lzujbky2013-1)
文摘By the so-called wormlike chain (WLC) model in polymer physics envision- ing an isotropic rod that is continuously flexible, the force-extension relations of semi- flexible polymer chains strongly constrained by various confinements are theoretically investigated, including a slab-like confinement where the polymer chains are sandwiched between two parallel impenetrable walls, and a capped nanochannel confinement with a circular or rectangular cross-section where the chains are bounded in three directions. The Brownian dynamics (BD) simulations based on the generalized bead-rod (GBR) model are performed to verify the theoretical predictions.
基金supported by the MEXT program“Elements Strategy Initiative to Form Core Research Center”(since 2012),MEXTMinistry of Education Culture,Sports,Science and Technology,Japan.
文摘As an example of a very low friction system,Monte Carlo Brownian dynamics simulations have been used to calculate equilibrium structures of a polyelectrolyte brush grafted onto planes.The polymers were calculated in a semi-flexible coarse-grain model that is appropriate to treat the charge density of the polyion.The effect of linear charge density on the polyionx,the surface negative charge,and added salts were studied.In salt-free solution,scaling theories predicted the structure well in the lowxregion.In the highxregion,additional shrinkage was found from the theories due to counterion condensation.The effect of surface charge showed not only the repulsion of the polyion from the surface but also the shrinkage in the highxregion due to the additional counterions required for electrical neutrality.The addition of salts led to the shrinkage of the brush heights,and in the highxregion,additional extension was found.The computational strategy for calculating the friction dynamics of the system is also discussed.
基金financially supported by the Scientific Research Project of Yili Normal University(No.2022YSYB009)the National Natural Science Foundation of China(No.2019M651340)。
文摘Combining Brownian dynamics simulations and self-consistent field theory,we demonstrate that the architectural parameters of coreshell comb-like chains have a decisive influence on their final self-assembled conformations.When the ratio of hydrophilic and hydrophobic segments is N_(g,g)∶N_(g,r)=3∶1,no core-shell structure is observed,and unsegregated chains or clusters are substituted.When N_(g,g)∶N_(g,r)=3∶2or 3∶3,the core-shell comb-like chains can be assembled into single micelles or structures where several small micelles are strung together by the backbone,which is similar to the pearl-necklace structure formed by the polyelectrolytes in poor solvent.With the increase of backbone length or grafting density,the probability of forming single micelles becomes lower,but the structures of two,three or more small micelles strung together are more observed.Our results indicate how to obtain the desired self-assembled structures of core-shell comb-like chains by regulating the architectural parameters,which could provide insights for the optimization of molecular design in various applications.