Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric tra...Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric traction systems. It is known that the BLDC motors have no brushes for commutation. They are commutated with electronically commutation. So, the rotor position information of the BLDC motors must be known to understand which winding will be energized according to the energizing sequence. In most of the existing BLDC motor drivers, rotor position information is detected by Hall effect sensors. This kind of mechanical position sensors will bring additional connections and costs, reliability decrease and noise increase. In order to improve the control performance and extend the range of speed regulation for BLDC motors, a position sensorless control method is proposed in this paper. In the proposed control method, rotor position information of the BLDC motors is detected from the back electromagnetic forces(back-EMFs) which are estimated by an unknown-input observer with line to line currents and line to line voltages. For the purpose of verifying the effectiveness of the proposed control method, a model is built and simulated on the Matlab/Simulink platform. The simulation results show that the speed regulation performance of BLDC motors is improved compared with using Hall effect sensors. At the same time, the reliability of the BLDC motors is improved and the costs of them are reduced because the position sensor is eliminated.展开更多
针对传统的带位置传感器的无刷直流电机体积大、控制精度低、抗干扰能力差等缺点,本文采用反电势法对基于数字信号处理(digital signal processing,DSP)的无位置传感器无刷直流电机的控制系统进行研究。本系统采用IR2130的驱动电路,转...针对传统的带位置传感器的无刷直流电机体积大、控制精度低、抗干扰能力差等缺点,本文采用反电势法对基于数字信号处理(digital signal processing,DSP)的无位置传感器无刷直流电机的控制系统进行研究。本系统采用IR2130的驱动电路,转子位置检测电路和保护电路,对系统的硬件电路及软件设计方案进行论述,并对控制系统进行分析。该系统简化了硬件结构,使电机能够得到稳定有效的控制,并能准确检测电机转子的位置,具有良好的调速性能及较高的实用价值。展开更多
针对有传感器无刷直流电机(Brushless DC Motor, BLDCM)成本高且运行可靠性易受环境影响等缺点,结合实际工程项目需求,对BLDCM工作原理进行分析,提出一种基于STM32F031芯片的无位置传感器BLDCM控制系统设计方案。该方案通过旋转电压脉...针对有传感器无刷直流电机(Brushless DC Motor, BLDCM)成本高且运行可靠性易受环境影响等缺点,结合实际工程项目需求,对BLDCM工作原理进行分析,提出一种基于STM32F031芯片的无位置传感器BLDCM控制系统设计方案。该方案通过旋转电压脉冲注入检测电机转子初始位置,避免电机静止启动出现倒转现象,并在电机运行过程中采用反电动势过零点预估电机换相点。实验结果表明该系统运行稳定可靠,启动平稳,且换相位置准确性高,具有较高的应用价值。展开更多
为实现无刷直流电机(brushless DC motor,BLDCM)无位置传感器控制,该文提出一种改进型的线反电势滑模观测器,为减少系统的抖振,该观测器引入了一种光滑的双曲正切函数,使得控制系统不必外加低通滤波器和相位补偿模块就可以获得平滑的线...为实现无刷直流电机(brushless DC motor,BLDCM)无位置传感器控制,该文提出一种改进型的线反电势滑模观测器,为减少系统的抖振,该观测器引入了一种光滑的双曲正切函数,使得控制系统不必外加低通滤波器和相位补偿模块就可以获得平滑的线反电动势估计值,进而避免了反电势估计值的相位滞后。文中将估计得到的线反电势信号对应为3个虚拟霍尔信号,直接获得6个离散的换相信号,从而无需固定相移电路和相移角的计算。仿真和实验表明,该文所提出的方法能够准确估计BLDCM的线反电动势,实现了BLDCM无位置传感器控制。展开更多
文摘Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric traction systems. It is known that the BLDC motors have no brushes for commutation. They are commutated with electronically commutation. So, the rotor position information of the BLDC motors must be known to understand which winding will be energized according to the energizing sequence. In most of the existing BLDC motor drivers, rotor position information is detected by Hall effect sensors. This kind of mechanical position sensors will bring additional connections and costs, reliability decrease and noise increase. In order to improve the control performance and extend the range of speed regulation for BLDC motors, a position sensorless control method is proposed in this paper. In the proposed control method, rotor position information of the BLDC motors is detected from the back electromagnetic forces(back-EMFs) which are estimated by an unknown-input observer with line to line currents and line to line voltages. For the purpose of verifying the effectiveness of the proposed control method, a model is built and simulated on the Matlab/Simulink platform. The simulation results show that the speed regulation performance of BLDC motors is improved compared with using Hall effect sensors. At the same time, the reliability of the BLDC motors is improved and the costs of them are reduced because the position sensor is eliminated.
文摘针对传统的带位置传感器的无刷直流电机体积大、控制精度低、抗干扰能力差等缺点,本文采用反电势法对基于数字信号处理(digital signal processing,DSP)的无位置传感器无刷直流电机的控制系统进行研究。本系统采用IR2130的驱动电路,转子位置检测电路和保护电路,对系统的硬件电路及软件设计方案进行论述,并对控制系统进行分析。该系统简化了硬件结构,使电机能够得到稳定有效的控制,并能准确检测电机转子的位置,具有良好的调速性能及较高的实用价值。
文摘针对有传感器无刷直流电机(Brushless DC Motor, BLDCM)成本高且运行可靠性易受环境影响等缺点,结合实际工程项目需求,对BLDCM工作原理进行分析,提出一种基于STM32F031芯片的无位置传感器BLDCM控制系统设计方案。该方案通过旋转电压脉冲注入检测电机转子初始位置,避免电机静止启动出现倒转现象,并在电机运行过程中采用反电动势过零点预估电机换相点。实验结果表明该系统运行稳定可靠,启动平稳,且换相位置准确性高,具有较高的应用价值。
文摘为实现无刷直流电机(brushless DC motor,BLDCM)无位置传感器控制,该文提出一种改进型的线反电势滑模观测器,为减少系统的抖振,该观测器引入了一种光滑的双曲正切函数,使得控制系统不必外加低通滤波器和相位补偿模块就可以获得平滑的线反电动势估计值,进而避免了反电势估计值的相位滞后。文中将估计得到的线反电势信号对应为3个虚拟霍尔信号,直接获得6个离散的换相信号,从而无需固定相移电路和相移角的计算。仿真和实验表明,该文所提出的方法能够准确估计BLDCM的线反电动势,实现了BLDCM无位置传感器控制。